1.cho tam giác ABC có góc A < 90 độ . trên nửa mặt phẳng bờ AB ko chứa điểm C ; vẽ tia Ax vuông góc với AB . trên tia Ax lấy điểm D sao cho AD = AB . trên nửa mặt phẳng bờ AB ko chứa điểm B vẽ tia Ay vuông AC , trên đó lấy điểm E sao cho AE = AC.gọi M là trung điểm BC.chứng minh AM=1/2DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự vẽ hình nha
a, Ta có : CAD = CAB + BAD = CAB + 90
EAB = EAC + CAB = CAB + 90
=> CAD = EAB
ta có : tam giác ACD = AEB ( c.g.c)
b,gọi M,N lần lượt là giao điểm của CD với EB
ta có : ADM = MBN ( tam giác ACD = AEB ) ; MNB = AMD ( đối đỉnh )
vì ADM + AMD = 90 độ ( tam giác ADM vuông tại A )
nên MBN + BMN = 90 độ => MNB = 90 độ => EB vuông góc CD
c, Gọi H là giao điểm của CA và ED. Giả sử CA vuông góc ED
=> EHC = 90 độ hay EH vuông góc với CA. như vậy từ điểm E có hai đường thẳng EA và ED cùng vuông góc với đường thẳng AC. điều này trái với tiên đề Ơ - Clit về đường thẳng vuông góc
Hình tự vẽ
có DAB=EAC =90*
=>DAB+BAC=EAC+BAC
=>DAC=BAE
Xét tam giác ACD và Tam giác AED có:
AB=AD(gt)
DAC=BAE(cmt)
AE=AC(gt)
=>Tam giác ACD= tam giác AEB(c-g-c)
b) Gọi là giao điểm của EB và CD
F là giao của CD và AB
Xét tam giác FAC và tam giác FIB, có:
AFD=IFD(đối đỉnh)
ADF=IBF(tam giác ACD= tam giác AEB0
=>DAF=BIF=90*
=>EB vuông góc vớiCD
a, Ta có : CAD = CAB + BAD = CAB + 90
EAB = EAC + CAB = CAB + 90
=> CAD = EAB
Ta có : tam giác ACD = AEB ( c.g.c)
b, Gọi M,N lần lượt là giao điểm của CD với EB
Ta có : ADM = MBN ( tam giác ACD = AEB ) ; MNB = AMD ( đối đỉnh )
Vì ADM + AMD = 90 độ ( tam giác ADM vuông tại A )
Nên MBN + BMN = 90 độ => MNB = 90 độ => EB vuông góc CD
c, Gọi H là giao điểm của CA và ED. Giả sử CA vuông góc ED
=> EHC = 90 độ hay EH vuông góc với CA. như vậy từ điểm E có hai đường thẳng EA và ED cùng vuông góc với đường thẳng AC. điều này trái với tiên đề Ơ - Clit về đường thẳng vuông góc
nha
Kéo dài BA về phía A cắt tia CE tại F . Xét tam giác vuông ACF có
^AFC=180-(^FAC+^ACF)=180-(90+50)=40
=> ^AFC=^ABD => BD//CE (Hai góc so le trong bằng nhau)
a: Ta có: \(\widehat{MAC}=\widehat{MAB}+\widehat{BAC}=90^0+\widehat{BAC}\)
\(\widehat{NAB}=\widehat{BAC}+\widehat{NAC}=\widehat{BAC}+90^0\)
Do đó: \(\widehat{MAC}=\widehat{NAB}\)
Xét ΔMAC và ΔBAN có
MA=BA
\(\widehat{MAC}=\widehat{BAN}\)
AC=AN
Do đó: ΔMAC=ΔBAN
b: Gọi H là giao điểm của CM và BN
Ta có: ΔMAC=ΔBAN
=>\(\widehat{ANB}=\widehat{ACM}\)
=>\(\widehat{ANH}=\widehat{ACH}\)
=>AHCM là tứ giác nội tiếp
=>\(\widehat{NHC}=\widehat{NAC}=90^0\)
=>NB\(\perp\)MC tại H
Lấy điểm M thuộc tia AM sao cho M là trung điểm của AM.
Ta chứng minh được:
\(\Delta AMB=\Delta M'MC\left(c.g.c\right)\) suy ra AB = BM'.
\(\Delta AMC=\Delta M'MB\left(c.g.c\right)\Rightarrow AC=BM'\), \(\widehat{CAM}=\widehat{BM'M}\).
Theo định lý tổng ba góc trong tam giác:
\(\widehat{M'AB}+\widehat{BM'A}+\widehat{ABM'}=180^o\Leftrightarrow\widehat{BAM'}+\widehat{ABM'}+\widehat{M'AC}=180^o\).
Mà \(\widehat{DAE}+\widehat{BAM}+\widehat{MAC}=180^o\).
Suy ra \(\widehat{DAE}=\widehat{ABM'}\).
Xét tam giác DAE và tam giác ABM' cóL
DA = AB.
BM' = AC = AE.
\(\widehat{DAE}=\widehat{ABM'}\).
Suy ra \(\Delta DAE=\Delta AB'M\left(c.g.c\right)\).
Suy ra DM = AM' = 2AM. (đpcm).