K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt A=(-1)+(-3)+(-5)+...+[-(2n+1)]

B=1+3+5+...+2n+1

=>A=-B

Số số hạng của B là (2n+1-1):2+1=(n+1)(số)

Tổng của B là:

\(\dfrac{\left(2n+1+1\right)\cdot\left(n+1\right)}{2}=\dfrac{\left(2n+2\right)\cdot\left(n+1\right)}{2}=\left(n+1\right)^2\)

\(\Leftrightarrow A=-\left(n+1\right)^2\)

DD
22 tháng 1 2021

\(\frac{1}{1.\left(2n-1\right)}+\frac{1}{3.\left(2n-3\right)}+...+\frac{1}{\left(2n-3\right).3}+\frac{1}{\left(2n-1\right).1}\)

\(=\frac{1}{2n}\left[\frac{2n-1+1}{1\left(2n-1\right)}+\frac{2n-3+3}{3\left(2n-3\right)}+...+\frac{3+2n-3}{\left(2n-3\right).3}+\frac{1+2n-1}{\left(2n-1\right).1}\right]\)

\(=\frac{1}{2n}\left(1+\frac{1}{2n-1}+\frac{1}{3}+\frac{1}{2n-3}+...+\frac{1}{2n-3}+\frac{1}{3}+\frac{1}{2n-1}+1\right)\)

\(=\frac{1}{n}\left(1+\frac{1}{3}+...+\frac{1}{2n-3}+\frac{1}{2n-1}\right)\)

\(\Rightarrow\frac{A}{B}=\frac{1}{n}\).

Chọn C

DD
22 tháng 1 2021

\(A=\frac{1}{1\left(2n-1\right)}+\frac{1}{3\left(2n-3\right)}+...+\frac{1}{\left(2n-1\right).1}\)

\(A=\frac{1}{2n}\left[\frac{2n-1+1}{1\left(2n-1\right)}+\frac{2n-3+3}{3\left(2n-3\right)}+...+\frac{1+2n-1}{\left(2n-1\right).1}\right]\)

\(A=\frac{1}{2n}\left[\frac{1}{1}+\frac{1}{2n-1}+\frac{1}{3}+\frac{1}{2n-3}+...+\frac{1}{2n-1}+\frac{1}{1}\right]\)

\(A=\frac{1}{n}\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2n-3}+\frac{1}{2n-1}\right)\)

\(\Rightarrow\frac{a}{b}=\frac{1}{n}\).

14 tháng 5 2017

Ta có
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n+1\right).\left(2n+3\right)}\)
\(=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}\right)+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)+...+\frac{1}{2}\left(\frac{1}{2n+1}-\frac{1}{2n+3}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n+1}-\frac{1}{2n+3}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{2n+3}\right)\)
\(=\frac{1}{2}\cdot\frac{2n+2}{2n+3}\)
\(=\frac{2n+2}{4n+6}=\frac{2\left(n+1\right)}{2\left(2n+3\right)}=\frac{n+1}{2n+3}\)
\(\RightarrowĐPCM\)