K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2016

Ta có: \(a^2-b^2=97\Leftrightarrow\left(a-b\right)\left(a+b\right)=97\)

Vì a và b là 2 số nguyên dương và a-b<a+b\(\Rightarrow a-b=1\)\(a+b=97\) (Vì 97 là số nguyên tố)

Suy ra a=49 và b=48

6 tháng 12 2016

Ta có 97 là số nguyên tố

a2 - b2 = 97

<=> (a + b)(a - b) = 97

\(\Leftrightarrow\hept{\begin{cases}a-b=1\\a+b=97\end{cases}}\Leftrightarrow\hept{\begin{cases}a=49\\b=48\end{cases}}\)

=> a2 + b2 = 492 + 482 = 4705

22 tháng 12 2017

o0o Nguyễn o0o CTV  làm kết luận thế là chưa đúng đâu nhé.

8 tháng 1 2017

Ta có: \(a^2-b^2=97\) => (a - b)(a + b) = 97 = 1.97 = 97.1 (vì 97 là số nguyên tố)

Vì a và b là hai số nguyên dương, mà a - b < a + b   =>  a-b = 1 và a+b = 97

=>  a = 49 , b = 48

8 tháng 1 2017

Ta có 97 là số nguyên tố

a2-b2=97

<=>(a+b).(a-b)=97

\(\orbr{\begin{cases}a-b=1\\a+b=97\end{cases}}< =>\orbr{\begin{cases}a=49\\b=48\end{cases}}\)

Vay a=49 va b=48

tk cko mk nha.chuc ban hoc tot

21 tháng 12 2016

Kết quả =4705

9 tháng 1 2017

ta có a^2-b^2=97 =>(a-b)(a+b)=97

Vì a,b dương và a-b<a+b nên =>a-b=1,a+b=97                 (ước của 97 là 1 và 97)

có tổng và hiệu ta tính đc a=49,b=48

=>a^2+b^2=49^2+48^2=4705

10 tháng 9 2016

\(\frac{b}{a+b}=\frac{c}{b+c}=\frac{a}{a+c}\Rightarrow\frac{a+b}{b}=\frac{b+c}{c}=\frac{a+c}{a}\)

\(\Leftrightarrow\frac{a}{b}+1=\frac{b}{c}+1=\frac{c}{a}+1\)\(a,b,c>0\Rightarrow a+b+c\ne0\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)

\(\Rightarrow M=\frac{ab+bc+ac}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

29 tháng 12 2016

\(\orbr{\begin{cases}a=49&b=48&\end{cases}\Rightarrow49^2+48^2=2401+2304=4705}\)

19 tháng 12 2016

- Ta có : 97 là số nguyên tố.
a2-b2=97
=> a - b = 1
=> a + b = 97
=> a = 49
=> b = 48
=> a2+b2= 492+482=4705

3 tháng 12 2016

a^2-b^2=97

<=>(a-b)(a+b)=97=1.97=97.1

vì a,b nguyên dương nên a-b < a+b 

=>a-b=1 và a+b=97

từ a-b=1=>a=b+1

do đó a+b=97<=>b+1+b=97<=>2b=96<=>b=48<=>a=49

Vậy a^2+b^2=48^2+49^2=4705

3 tháng 12 2016

a^2-b^2=(a-b)(a+b)=97=1.97

a-b=1

a+b=97

a=49

b=48

a^2+b^2=a^2-b^2+2.b^2=97+2.48^2=4705

8 tháng 7 2021

Ta có \(\sqrt{8a^2+56}=\sqrt{8\left(a^2+7\right)}=2\sqrt{2\left(a^2+ab+2bc+2ca\right)}\)

\(=2\sqrt{2\left(a+b\right)\left(a+2c\right)}\le2\left(a+b\right)+\left(a+2c\right)=3a+2b+2c\)

Tương tự \(\sqrt{8b^2+56}\le2a+3b+2c;\)\(\sqrt{4c^2+7}=\sqrt{\left(a+2c\right)\left(b+2c\right)}\le\frac{a+b+4c}{2}\)

Do vậy \(Q\ge\frac{11a+11b+12c}{3a+2b+2c+2a+3b+2c+\frac{a+b+4c}{2}}=2\)

Dấu "=" xảy ra khi và chỉ khi \(\left(a,b,c\right)=\left(1;1;\frac{3}{2}\right)\)

a) \(P=1957\)

b) \(S=19.\)