phương trình mX2 - 2(m-1)x+m-3=0 có 2 nghiệm âm phân biệt khi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\Delta=\left(2m-1\right)^2-4m\left(m-2\right)>0\\x_1+x_2=\dfrac{1-2m}{m}< 0\\x_1x_2=\dfrac{m-2}{m}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\4m+1>0\\\dfrac{1-2m}{m}< 0\\\dfrac{m-2}{m}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{4}\\\left[{}\begin{matrix}m< 0\\m>\dfrac{1}{2}\end{matrix}\right.\\\left[{}\begin{matrix}m< 0\\m>2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{4}< m< 0\\m>2\end{matrix}\right.\)
Phương trình mx2 – 2(m – 1)x + m – 3 = 0
có a = m; b’ = − (m – 1); c = m – 3
Suy ra = [− (m – 1)]2 – m(m − 3) = m + 1
Để phương trình có hai nghiệm phân biệt thì
a ≠ 0 Δ ' > 0 ⇔ m ≠ 0 m + 1 > 0 ⇔ m ≠ 0 m > − 1
Nên với đáp án A: m = − 5 4 < − 1
thì phương trình không có hai nghiệm phân biệt
Đáp án cần chọn là: A
\(x^2-\left(m+1\right)+m=0\left(1\right)\)
Ta có \(\Delta=b^2-4ac=[-\left(m+1\right)]^2-4m\)
\(=m^2+2m+1-4m=m^2-2m+1\)
\(=\left(m-1\right)^2\ge0\)
Để phương trình 1 luôn có 2 nghiệm phân biệt \(\Delta>0\Rightarrow m-1\ne0\Rightarrow m\ne1\)
Vậy \(m\ne1\) thì phương trình 1 luôn có 2 nghiệm phân biệt.
Ta có: \(\Delta=\left(-m-1\right)^2-4\cdot1\cdot m\)
\(=m^2+2m+1-4m\)
\(=m^2-2m+1\)
\(=\left(m-1\right)^2\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow m-1\ne0\)
hay \(m\ne1\)
\(mx^2+\left(m-1\right)x+3-4m=0\left(1\right)\)
\(m=0\Rightarrow\)\(\left(1\right)\Leftrightarrow-x+3=0\Leftrightarrow x=3\left(ktm\right)\)
\(m\ne0\Rightarrow x1< 2< x2\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\\left(x1-2\right)\left(x2-2\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)^2-4m\left(3-4m\right)>0\\x1x2-2\left(x1+x2\right)+4< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>\dfrac{7+4\sqrt{2}}{17}\\m< \dfrac{7-4\sqrt{2}}{17}\end{matrix}\right.\\\dfrac{3-4m}{m}-2.\left(\dfrac{1-m}{m}\right)+4< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>\dfrac{7+4\sqrt{2}}{17}\\m< \dfrac{7-4\sqrt{2}}{17}\end{matrix}\right.\\-\dfrac{1}{2}< m< 0\\\end{matrix}\right.\)\(\Rightarrow m\in\phi\)
Bài 2:
a: TH1: m=0
=>-x+1=0
=>x=-1(nhận)
TH2: m<>0
\(\text{Δ}=\left(m-1\right)^2-4m\left(1-m\right)\)
=m^2-2m+1-4m+4m^2
=5m^2-6m+1
=(2m-1)(3m-1)
Để phương trình có nghiệm thì (2m-1)(3m-1)>=0
=>m>=1/2 hoặc m<=1/3
b: Để phương trình có hai nghiệm phân biệt thì (2m-1)(3m-1)>0
=>m>1/2 hoặc m<1/3
c: Để phương trình có hai nghiệmtrái dấu thì (1-m)*m<0
=>m(m-1)>0
=>m>1 hoặc m<0
d: Để phương trình có hai nghiệm dương phân biệt thì
\(\left\{{}\begin{matrix}m\in\left(-\infty;\dfrac{1}{3}\right)\cup\left(\dfrac{1}{2};+\infty\right)\\\dfrac{-m+1}{m}>0\\\dfrac{1-m}{m}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left(-\infty;\dfrac{1}{3}\right)\cup\left(\dfrac{1}{2};+\infty\right)\\0< m< 1\end{matrix}\right.\)
=>1/2<m<1
TH1: m=1
Phương trình sẽ trở thành:
\(\left(1-1\right)x^2+2\left(1-1\right)x-1=0\)
=>-1=0(vô lý)
=>Loại
TH2: m<>1
\(\Delta=\left[2\left(m-1\right)\right]^2-4\cdot\left(m-1\right)\left(-m\right)\)
\(=\left(2m-2\right)^2+4m\left(m-1\right)\)
\(=4m^2-8m+4+4m^2-4m\)
\(=8m^2-12m+4\)
\(=4\left(2m^2-3m+1\right)\)
\(=4\left(2m-1\right)\left(m-1\right)\)
Để phương trình có hai nghiệm phân biệt thì \(4\left(2m-1\right)\left(m-1\right)>0\)
=>(2m-1)(m-1)>0
=>\(\left[{}\begin{matrix}m>1\\m< \dfrac{1}{2}\end{matrix}\right.\)
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-2\left(m-1\right)}{m-1}=-2\\x_1\cdot x_2=\dfrac{c}{a}=-\dfrac{m}{m-1}\end{matrix}\right.\)
Để phương trình có hai nghiệm phân biệt cùng âm thì \(\left\{{}\begin{matrix}\Delta>0\\x_1+x_2< 0\\x_1\cdot x_2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< \dfrac{1}{2}\end{matrix}\right.\\-2=0\left(đúng\right)\\-\dfrac{m}{m-1}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< \dfrac{1}{2}\end{matrix}\right.\\\dfrac{m}{m-1}< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< \dfrac{1}{2}\end{matrix}\right.\\0< m< 1\end{matrix}\right.\)
=>\(0< m< \dfrac{1}{2}\)
\(mx^2-2\left(m-1\right)x+m-3=0\) (*)
\(\Delta'=\left(m-1\right)^2-m^2\)\(=\left(m-1-m\right)\left(m-1+m\right)\)
\(=-1\left(2m-1\right)\).(*) có 2 nghiệm phân biệt khi \(\Delta'>0\)
\(\Rightarrow-1\left(2m-1\right)>0\Rightarrow2m>1\Rightarrow m>\frac{1}{2}\)
Vậy (*) có 2 nghiệm phân biệt khi \(m>\frac{1}{2}\)
sai rồi âm phân biệt mà