K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có

M là trung điểm của BC

N là trung điểm của AC
DO đó: MN là đường trung bình

=>MN//AB

hay MD//AB

Xét tứ giác ABMD có 

AD//BM

AB//MD

Do đó; ABMD là hình bình hành

b:

Ta có: MN=1/2AB

nên MN=1/2AC

mà MN=1/2MD

nên AC=MD

c: Ta có: ABMD là hình bình hành

nên AD//MB và AD=MB

=>AD//MC và AD=MC

Xét tứ giác AMCD có

AD//MC

AD=MC

Do đó: AMCD là hình bình hành

mà MD=AC

nên AMCD là hình chữ nhật

23 tháng 10 2019

bài 1 . c) dễ dàng chứng minh tam giác DMA = tam giác DME (2 cạnh góc vuông)  .Ta đc DA=DE , mà AD =BC nên BC = DC 

 Suy ra : tam giác AME = tam giác NBC ( cạnh huyền-cạnh góc vuông )  .( 1) 

         Tam giác MAN và tam giác EMC có : AN song song với MC nên góc EMC = góc MAN  mà AN=MC(ANCM là hbh) , ME=MA nên 2 tam giác này bằng nhau (c.g.c) ;Suy ra góc M= góc e suy ra EC// MN (2) 

Từ (1) và (2) suy ra là htc 

23 tháng 10 2019

caau1 d) dựa vào tính chất 2 đường chéo = nhau song chứng minh từ từ là ra bởi đã có góc E=C= 90 độ

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành

5 tháng 11 2017

a)  gócm=gócb =gócc=gócn mn // bc

b) ncf=cne=anm=gócb=cfe=fen; tam giác ine=tam giác icf suy ra ne=cf 

c) suy ra necf là hình bình hành có fe=in+nc=ie+if =nc nên necf là hcn

4 tháng 1 2017

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)

Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)

DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)

Từ (1) và (2) ⇒ MHDE là hình thang cân.

d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH

Xét ΔDIH và ΔKIA có

IH = IA

∠DIH = ∠AIK (đối đỉnh),

∠H1 = ∠A1(so le trong)

ΔDIH = ΔKIA (g.c.g)

⇒ ID = IK

Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành

⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC

20 tháng 9 2023

A B C E F I G

a/

Ta có

FA=FC; GB=GC => GF là đường trung bình của tg ABC

=> GF//AB Mà \(AB\perp AC\)

\(\Rightarrow GF\perp AC\)

=> AEGF là hình thang vuông tại A và F

b/

EI//BF (gt)

GF//AB => FI//BE

=> BEIF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

c/

Ta có GF là đường trung bình của tg ABC \(\Rightarrow GF=\dfrac{1}{2}AB\)

 BEIF là hbh (cmt) =>FI=EB

Mà \(EA=EB=\dfrac{1}{2}AB\)

=> GF=FI

Ta có

FA=FC

=> AGCI là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

Mà \(GF\perp AC\Rightarrow GI\perp AC\)

=> AGCI là hình thoi (Hình bình hành có 2 đường chéo vuông góc là hình thoi)

d/

Để AGCI là hình vuông \(\Rightarrow AG\perp BC\) => AG là đường cao của tg ABC

Mà GB=GC => AG là đường trung tuyến của tg ABC

=> tg ABC là tg cân tại A (Tam giác có đường cao và đồng thời là đường trung tuyến là tg cân)

Mà \(\widehat{A}=90^o\) (gt)

=> Đk để AGCI là hình vuông thì tg ABC phải là tg vuông cân tại A

 

 

 

16 tháng 12 2023

MMỉm đang cần rất gấp  giúp mỉm với

 

16 tháng 12 2023

loading...  a) Do MN // AB (gt)

⇒ MN // AE

Do ME // AC (gt)

⇒ ME // AN

Do AM là tia phân giác của ∠BAC (gt)

⇒ AM là tia phân giác của ∠EAN

Xét tứ giác AEMN có:

MN // AE (cmt)

ME // AN (cmt)

⇒ AEMN là hình bình hành

Mà AM là tia phân giác của ∠EAN (cmt)

⇒ AEMN là hình thoi

b) Do D là điểm đối xứng của M qua N (gt)

⇒ N là trung điểm của DM

∆ABC cân tại A có AM là tia phân giác của ∠BAC (gt)

⇒ AM cũng là đường trung trực của ∆ABC

⇒ M là trung điểm của BC

∆ABC có:

M là trung điểm của BC (cmt)

MN // AB (gt)

⇒ N là trung điểm của AC

Tứ giác ADCM có:

N là trung điểm của DM (cmt)

N là trung điểm của AC (cmt)

⇒ ADCM là hình bình hành

⇒ AD // CM

⇒ AD // BM

Do MN // AB (gt)

⇒ MD // AB

Tứ giác ADMB có:

MD // AB (cmt)

AD // BM (cmt)

⇒ ADMB là hình bình hành