Cho tam giác ABC vuông góc tại đỉnh A, đường cao AH. Từ H kẻ HM vuông góc với AC và trên tia đối HM lấy điểm E sao cho MH=EM. Kẻ HN vuông góc với AB và trên tia đối của tia NH lấy điểm D sao cho NH=ND
a) Chứng minh 3 điểm D, A, E thẳng hàng
b) Chứng minh MN//DE
c) Chưng minh BD//CE
d) Chưng minh tam giác DHE là tam giác đều
P/s Giải nhanh giùm vs đg gấp
a: Xét ΔAHD có
AN là đường cao
AN là đường trung tuyến
Do đó:ΔAHD cân tại A
mà AB là đường trung tuyến
nên AB là tia phân giác của góc HAD(1)
Xét ΔAHE có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔAHE cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc HAE(2)
Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)=2\cdot90^0=180^0\)
hay D,A,E thẳng hàng
b: Xét ΔHED có
M là trung điểm của HE
N là trung điểm của HD
Do đó: MN là đường trung bình
=>MN//ED
d: Xét ΔDHE có
HA là đường trung tuyến
HA=DE/2
Do đó:ΔDHE vuông tại H