Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHD có
AN là đường cao
AN là đường trung tuyến
Do đó:ΔAHD cân tại A
mà AB là đường trung tuyến
nên AB là tia phân giác của góc HAD(1)
Xét ΔAHE có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔAHE cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc HAE(2)
Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)=2\cdot90^0=180^0\)
hay D,A,E thẳng hàng
b: Xét ΔHED có
M là trung điểm của HE
N là trung điểm của HD
Do đó: MN là đường trung bình
=>MN//ED
d: Xét ΔDHE có
HA là đường trung tuyến
HA=DE/2
Do đó:ΔDHE vuông tại H
a) Xét ΔDAN,ΔHANΔDAN,ΔHAN có :
HN=ND(gt)HN=ND(gt)
ANDˆ=ANHˆ(=90O)AND^=ANH^(=90O)
AN:ChungAN:Chung
=> ΔDAN=ΔHAN(c.g.c)ΔDAN=ΔHAN(c.g.c)
b) Xét ΔAMH,ΔAMEΔAMH,ΔAME có :
HM=ME(gt)HM=ME(gt)
AMHˆ=AMEˆ(=90o)AMH^=AME^(=90o)
AM:ChungAM:Chung
=> ΔAMH=ΔAME(c.g.c)ΔAMH=ΔAME(c.g.c)
Xét tứ giác ANHM có :
Nˆ=90O(HN⊥AB)N^=90O(HN⊥AB)
Aˆ=90O(ΔABC⊥A)A^=90O(ΔABC⊥A)
Mˆ=90O(HM⊥AC)M^=90O(HM⊥AC)
=> Tứ giác ANHM là hình chữ nhật
=> {NH=AMNA=HM{NH=AMNA=HM (tính chất hình chữ nhật)
Ta dễ dàng chứng minh được : ΔANH=ΔAMH(c.c.c)ΔANH=ΔAMH(c.c.c)
Mà : {ΔAND=ΔANHΔAHM=ΔAEM(cmt){ΔAND=ΔANHΔAHM=ΔAEM(cmt)
Suy ra : ΔAND=ΔAMEΔAND=ΔAME
=> DA=AEDA=AE(2 cạnh tương ứng) (*)
c) Từ (*) => A là trung điểm của DE
Do đó : D,A,E thẳng hàng (đpcm)
link nè bạn http://lazi.vn/edu/exercise/cho-tam-giac-nhon-abc-ke-duong-cao-ah-tu-h-ke-he-vong-goc-ab-e-thuoc-ab-ke-f-vuong-goc-voi-ac-f-thuoc-ac
k mk nhé thanks
Này người lạ ơi
.
. đừng nhìn đi đâu
- đúng rồi
- là bạn đó
- cho mình xin 1 ( t í c h) nhé :)
- còn việc kết bạn cứ để mik lo
1: Xét ΔAHE có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔAHE cân tại A
mà AM là đường cao
nên AM là đường phân giác(1)
Xét ΔAHD có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔAHD cân tại A
mà AN là đường cao
nên AN là đường phân giác(2)
Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{MAH}+\widehat{NAH}\right)=2\cdot90^0=180^0\)
hay D,A,E thẳng hàng
2: Xét ΔHED có
M là trung điểm của HE
N là trung điểm của HD
Do đó: MN là đường trung bình
=>MN//ED
4: Ta có: AH=AD
mà AH=AE
nên AD=AE=AH
1: Xét ΔAHD có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔAHD cân tại A
mà AN là đường cao
nên AN là đường phân giác(1)
Xét ΔAHE có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔAHE cân tại A
mà AM là đường cao
nên AM là đường phân giác(2)
Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{MAH}+\widehat{NAH}\right)=2\cdot90^0=180^0\)
=>D,A,E thẳng hàng
2: Xét ΔHED có
M là trung điểm của HE
N là trung điểm của HD
Do đó: MN là đường trung bình
=>MN//ED
Xét ΔAHD có
AB vừa là đường cao, vừalà trung tuyến
nên ΔAHD cân tại A
=>AB là phân giác của góc HAD(1)
Xét ΔAHB và ΔADB có
AH=AD
góc HAB=góc DAB
AB chung
=>ΔAHB=ΔADB
=>góc ADB=90 độ
=>BD vuông góc DA
Xét ΔAHE có
AC vừa là đường cao, vừa là trung tuyến
nên ΔAHE cân tại A
=>AC là phân giác của góc HAE(2)
Xét ΔAHC và ΔAEC có
AH=AE
góc HAC=góc EAC
AC chung
=>ΔAHC=ΔAEC
=>góc AEC=90 độ
Từ (1), (2) suy ra góc DAE=2*90=180 độ
=>D,A,E thẳng hàng
=>BD//CE