2.x-(x+7) + 3.(x-2)=28
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7 x 2 = 14 7 x 4 = 28 7 x 6 = 42 7 x 3 = 21
2 x 7 = 14 4 x 7 = 28 6 x 7 = 42 3 x 7 = 21
14 : 7 = 2 28 : 7 = 4 42 : 7 = 6 21 : 7 = 3
14 : 2 = 7 28 : 4 = 7 42 : 6 = 7 21 : 3 = 7
a) Ta có : ( x + 1 ).( 3 - x ) > 0
Th1 : \(\hept{\begin{cases}x+1>0\\3-x>0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x>3\end{cases}\Rightarrow}x>3}\)
Th2 : \(\hept{\begin{cases}x+1< 0\\3-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x< 3\end{cases}\Rightarrow}x< -1}\)
Tìm x:
\(a.\dfrac{35}{28}-x=\dfrac{5}{14}\\ x=\dfrac{35}{28}-\dfrac{5}{14}\\ x=\dfrac{25}{28}\\ b.\dfrac{6}{7}\times x=\dfrac{2}{3}\\ x=\dfrac{2}{3}:\dfrac{6}{7}\\ x=\dfrac{7}{9}\\ c.x\times7=\dfrac{3}{4}\\ x=\dfrac{3}{4}:7\\ x=\dfrac{3}{28}\\ d.2:x-\dfrac{1}{3}=\dfrac{2}{5}\\ 2:x=\dfrac{2}{5}+\dfrac{1}{3}\\ 2:x=\dfrac{11}{15}\\ x=2:\dfrac{11}{15}\\ x=\dfrac{30}{11}.\)
\(a,\dfrac{35}{28}-x=\dfrac{5}{14}\)
\(x=\dfrac{35}{28}-\dfrac{5}{14}\)
\(x=\dfrac{25}{28}\)
\(b,\dfrac{6}{7}\times x=\dfrac{2}{3}\)
\(x=\dfrac{2}{3}:\dfrac{6}{7}\)
\(x=\dfrac{7}{9}\)
\(c,x\times7=\dfrac{3}{4}\)
\(x=\dfrac{3}{4}:7\)
\(x=\dfrac{3}{28}\)
\(d,2:x-\dfrac{1}{3}=\dfrac{2}{5}\)
\(2:x=\dfrac{2}{5}+\dfrac{1}{3}\)
\(2:x=\dfrac{11}{15}\)
\(x=2:\dfrac{11}{15}\)
\(x=\dfrac{30}{11}\)
#YVA
ĐKXĐ: \(x\ge\sqrt[3]{7}\)
\(4x^3-x^2+2x-32+\left(x^3-4\right)\left(\sqrt{x^3-7}-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x^2+7x+16\right)+\dfrac{\left(x^3-4\right)\left(x-2\right)\left(x^2+2x+4\right)}{\sqrt{x^3-7}+1}=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x^2+7x+16+\dfrac{\left(x^3-4\right)\left(x^2+2x+4\right)}{\sqrt{x^3-7}+1}\right)=0\)
\(\Leftrightarrow x=2\) (ngoặc đằng sau luôn dương do \(x^3-4=x^3-7+3>0\))
2.
\(\Leftrightarrow\left(2x^3\right)^3+2x^3=x^3+3x^2+3x+1+x+1\)
\(\Leftrightarrow\left(2x^3\right)^3+2x^3=\left(x+1\right)^3+x+1\)
Đặt \(\left\{{}\begin{matrix}2x^3=a\\x+1=b\end{matrix}\right.\)
\(\Rightarrow a^3-b^3+a-b=0\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Rightarrow2x^3=x+1\Leftrightarrow\left(x-1\right)\left(2x^2+2x+1\right)=0\)