Tìm n nguyên để phân số P =4n-1/2n+3 có giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
Để phân số có giá trị nguyên thì :
4n+5 chia hết 2n−1
⇔2.(2n−1)+7 chia hết 2n−1⇔
⇔7 chia hết 2n−1
⇔2n−1∈Ư(7)
⇔2n−1∈{−1,1,−7,7−1,1,−7,7}
⇔n∈{0,1,−3,40,1,−3,4}
để \(\frac{4n\text{+}5}{2n-1}\)là số nguyên \(\Rightarrow\)4n+5\(⋮\)2n-1
\(\Rightarrow\)(4n-2)+7\(⋮\)2n-1
Vì 4n-2\(⋮\)2n-1\(\Rightarrow\)7\(⋮\)2n-1\(\Rightarrow\)2n-1 là Ư(7) \(\in\){\(\pm\)1;\(\pm\)7}
Ta có bảng sau
2n-1 | 1 | -1 | 7 | -7 |
n | 1 | 0 | 4 | -3 |
Vậy n\(\in\){0;1;4;-3}
a) ĐKXĐ: \(n\ne3\)
Để phân số \(A=\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\)
\(\Leftrightarrow n-3-2⋮n-3\)
mà \(n-3⋮n-3\)
nên \(-2⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(-2\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{4;2;5;1\right\}\)
Vậy: \(n\in\left\{4;2;5;1\right\}\)
Để A đạt giá trị nguyên thì 4n-2 chia hết cho 2n+3
Mà 2(2n+3) chia hết cho 4n-2 hay 4n+6 chia hết cho 2n+3
\(\Rightarrow\)(4n-2)-(4n+6) chia hết cho 2n+3
(4n-4n)-(2+6) chia hết cho 2n+3
-8 chia hết cho 2n+3
\(\Rightarrow2n+3\inƯ\left(-8\right)\)
\(\Rightarrow2n+3\in\left\{1;2;4;8;-1;-2;-4;-8\right\}\)
\(\Rightarrow n\in\left\{-1;-\frac{1}{2};\frac{1}{2};\frac{5}{2};-2;-\frac{5}{2};-\frac{7}{2};-\frac{11}{2}\right\}\)
_HT_
Để P nguyên thì \(4n-1⋮2n+3\)
\(\Leftrightarrow-7⋮2n+3\)
\(\Leftrightarrow2n+3\in\left\{1;-1;7;-7\right\}\)
\(\Leftrightarrow2n\in\left\{-2;-4;4;-10\right\}\)
hay \(n\in\left\{-1;-2;2;-5\right\}\)