Quy đồng các phân thức
A. -7\x^2-4; 11\2x+4
B. 2\9x^2-1; 4x \1-3x
C.3\x+2;x+1\x^3+8;x+2\2x+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\dfrac{1}{2x^3y}=\dfrac{6yz^3}{12x^3y^2z^3}\)
\(\dfrac{2}{3xy^2z^3}=\dfrac{2\cdot4x^2}{12x^3y^2z^3}=\dfrac{8x^2}{12x^3y^2z^3}\)
\(\dfrac{x^2-4}{x^2+2x}=\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x+2\right)}=\dfrac{x-2}{x}=\dfrac{\left(x-2\right)^2}{x\left(x-2\right)}\)
\(\dfrac{x}{x-2}=\dfrac{x^2}{x\left(x-2\right)}\)
a)MTC:\(12x^5y^4\)
\(\dfrac{5}{x^5y^3}=\dfrac{5\cdot12y}{x^5y^3\cdot12y}=\dfrac{60y}{12x^5y^4}\)
\(\dfrac{7}{12x^3y^4}=\dfrac{7\cdot x^2}{12x^3y^4\cdot x^2}=\dfrac{7x^2}{12x^5y^4}\)
b)MTC:\(60x^4y^5\)
\(\dfrac{4}{15x^3y^5}=\dfrac{4\cdot4x}{15x^3y^5\cdot4x}=\dfrac{16x}{60x^4y^5}\)
\(\dfrac{11}{12x^4y^2}=\dfrac{11\cdot5y^3}{12x^4y^2\cdot5y^3}=\dfrac{55y^3}{60x^4y^5}\)
\(1,\\ a,=xy^2-\dfrac{3}{2}y^3+\dfrac{5}{4}x^2\\ b,=\left(x-7\right)\left(x+7\right):\left(x-7\right)=x+7\\ 2,\dfrac{1}{a^2}-ab=\dfrac{1-a^3b}{a^2};\dfrac{1}{a^2}\text{ giữ nguyên}\\ 3,=\dfrac{-7}{t}\\ 4,=\dfrac{1-x+1-y}{x-y}=\dfrac{2-x-y}{x-y}\)
Bài 1:
\(a,\left(16x^3y^2-24x^2y^3+20x^4\right):16x^2=16x^2\left(xy^2-\dfrac{3}{2}y^3+\dfrac{5}{4}x^2\right):16x^2=xy^2-\dfrac{3}{2}y^3+\dfrac{5}{4}x^2\)
\(b,\left(x^2-49\right):\left(x-7\right)=\left[\left(x-7\right)\left(x+7\right)\right]:\left(x-7\right)=x+7\)
Bài 2:
\(\dfrac{1}{a^2}-ab=\dfrac{1-a^2b}{a^2}\)
\(\dfrac{1}{a^2}\)
Bài 3:
\(\dfrac{7\left(t-z\right)}{t\left(z-t\right)}=\dfrac{-7\left(z-t\right)}{t\left(z-t\right)}=\dfrac{-7}{t}\)
Bài 4:
\(\dfrac{x-1}{y-x}+\dfrac{1-y}{x-y}=\dfrac{x-1}{y-x}-\dfrac{1-y}{y-x}=\dfrac{x-1-1+y}{y-x}=\dfrac{x+y-2}{y-x}\)
a: \(\dfrac{-7}{x^2-4}=\dfrac{-7}{\left(x-2\right)\left(x+2\right)}=\dfrac{-14}{2\left(x-2\right)\left(x+2\right)}\)
\(\dfrac{11}{2x+4}=\dfrac{11}{2\left(x+2\right)}=\dfrac{11\left(x-2\right)}{2\left(x+2\right)\left(x-2\right)}\)
b: \(\dfrac{2}{9x^2-1}=\dfrac{2}{\left(3x-1\right)\left(3x+1\right)}\)
\(\dfrac{4x}{1-3x}=\dfrac{-4x}{3x-1}=\dfrac{-4x\left(3x+1\right)}{\left(3x-1\right)\left(3x+1\right)}\)
c: \(\dfrac{3}{x+2}=\dfrac{6\left(x^2-2x+4\right)}{2\left(x+2\right)\left(x^2-2x+4\right)}\)
\(\dfrac{x+1}{x^3+8}=\dfrac{2x+2}{2\left(x+1\right)\left(x^2-2x+4\right)}\)
\(\dfrac{x+2}{2\left(x+2\right)}=\dfrac{\left(x+2\right)\left(x^2-2x+4\right)}{2\left(x+2\right)\left(x^2-2x+4\right)}\)