1. Cho tam giác AOB có OA = OB. Tia phân giác góc O cắt AB ở D. CMR:
a, DA = DB
b, OD vuông góc với AB
2. Cho tam giác ABC có góc  = \(90^0\). Vẽ phân giác của góc B cắt AC ở D. Trên cạnh BC lấy M sao cho BM = BA.
a, CM: tam giác ABD = tam giác MBD
b, Từ B kẻ đường thẳng Bx sao cho Bx vuông góc với BC, Bx cắt CA kéo dài tại E. CMR: EB // DM
1/ Ta có hình vẽ:
a/ Xét tam giác OAD và tam giác OBD có:
OD: cạnh chung
\(\widehat{AOD}\)=\(\widehat{BOD}\) (GT)
OA = OB (GT)
Vậy tam giác OAD = tam giác OBD (c.g.c)
=> DA = DB (2 cạnh tương ứng)
b/ Ta có: tam giác OAD = tam giác OBD (câu a)
=> \(\widehat{ODA}\)=\(\widehat{ODB}\) (2 góc tương ứng)
Mà \(\widehat{ODA}\) + \(\widehat{ODB}\) = 1800 (kề bù)
=> \(\widehat{ODA}\)=\(\widehat{ODB}\) = \(\frac{1}{2}\)1800 = 900
=> OD \(\perp\)AB
Vậy OD vuông góc với AB