K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2016

Xét tam giác AED và tam giác CEF có:

AE = CE (E là trung điểm của AC)

AED = CEF (2 góc đối đỉnh)

ED = EF (E là trung điểm của DF)

=> Tam giác AED = Tam giác CEF (c.g.c)

=> AD = CF (2 cạnh tương ứng) mà AD = DB (D là trung điểm của AB) => DB = CF

ADE = CFE (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AD // CF

Xét tam giác BDC và tam giác FCD có:

BD = FC (chứng minh trên)

BDC = FCD (2 góc so le trong, AD // CF)

CD chung

=> Tam giác BDC = Tam giác FCD (c.g.c)

=> BCD = FDC (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => DE // BC

BC = FD (2 cạnh tương ứng) mà DE = \(\frac{1}{2}FD\) (E là trung điểm của FD) => DE = \(\frac{1}{2}BC\)

31 tháng 12 2021

hình đâu bạn banhqua

4 tháng 3 2018

Xet ∆AED=∆CEF ( c-g-c )

=) AD=CF

Mà AD=DB

Suy ra DB=CF

b+c)

Ta có D là tđ AB

           F là tđ AC

Suy ra * DE//BC

=) FDC = DCB ( slt )

            * DE = 1/2BC =) BC = DF

Xét∆BDC=∆FCD ( c-g-c)

3 tháng 4 2020

Cho tam giác abc có gốc a bằng 90° trên bc lấy e sao cho BE = BA tia ph . Giác của góc b cắt ac ở d 

a chứng minh tam giác ABD = EBD 

b tính số đo BEM

c Chứng minh BD vuông góc với AE

24 tháng 12 2016

a) Xét t/g FEC và t/g DEA có:

FE = DE (gt)

FEC = DEA ( đối đỉnh)

EC = EA (gt)

Do đó, t/g FEC = t/g DEA (c.g.c)

=> FC = DA (2 cạnh tương ứng)

Mà DA = DB (gt) nên FC = DB (đpcm)

b) t/g FEC = t/g DEA (câu a)

=> FCE = DAE (2 góc tương ứng)

Mà FCE và DAE là 2 góc so le trong nên FC // AD hay FC // AB

Xét t/g BDC và t/g FCD có:

BD = FC (câu a)

BDC = FCD (so le trong)

CD là cạnh chung

Do đó, t/g BDC = t/g FCD (c.g.c) (đpcm)

c) t/g BDC = t/g FCD (câu b) => BC = FD (2 cạnh tương ứng)

BCD = FDC (2 góc tương ứng)

Mà DE = 1/2FD (gt)

BCD và FDC là 2 góc so le trong nên DE // BC; DE = 1/2BC (đpcm)

 

6 tháng 7 2017

B,D,C là 3 điểm thẳng hàng mà tam giác sao đc đề sai r kìa -.- DE giao BC song song sao đc ?

5 tháng 11 2018

câu c bn tự lm nha

xét tam giác AED và tam giác CEF ta có

AE=CE ( giả thiết)

DE=EF ( gt )

góc AED = góc FEC ( đối đỉnh)

suy ra tam giác AED=tam giác CEF( c-g-c)

=> AD =CF

=> ra BD = CF( cùng bằng AD)

b) ta có tam giác AED = tam giác CEF ( cmt)

=> góc ADE = góc EFC mà hai góc này nằm ở vị trí sole tròn nên AB song song với CF => góc BDC = góc FCD

xét tam giác BDC và tam giác FCD ta có

CD cạnh chung 

DB=CF ( theo câu a)

góc BDC=góc FCD

=>> tam giác BDC = tam giác FCD ( c-g-c)

đúng 99 % đs hình bn tự vẽ nha với câu c mình ko biết lm ahihi