K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2016

Đặt biểu thức trung gian là :

\(B=\frac{1}{2^2-1}+\frac{1}{3^2-1}+\frac{1}{4^2-1}+...+\frac{1}{n^2-1}\) thì \(A< B\)

Còn \(B=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{\left(n-1\right)\left(n+1\right)}\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n-1}-\frac{1}{n+1}\right)\)

\(=\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}-\frac{1}{n+1}\right)\)

\(=\frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{n}-\frac{1}{n+1}\right)< \frac{1}{2}.\frac{3}{2}=\frac{3}{4}\)

Vậy \(A< 3< \frac{3}{4}< 1.\)

 

29 tháng 7 2019

Cách 2. Gọi biểu thức trên là A.Ta làm trội:

\(\frac{1}{x^2}\left(x\ge2\right)=\frac{1}{x.x}< \frac{1}{\left(x-1\right).x}\). Khi đó, áp dụng vào,ta có:

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}< 1\forall n\ge2^{\left(đpcm\right)}\)

1 tháng 6 2018

vì bài dài quá nên mình làm từng bài 1 nhé

1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)

Do đó : 

\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)

1 tháng 6 2018

2.

Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Do đó : 

\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)

19 tháng 4 2020

Ta có A>1

\(A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{\left(n-1\right)\cdot n}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=2-\frac{1}{n}< 2\)

=> 1<A<2 => A không là số tự nhiên

25 tháng 7 2019

Bạn tham khảo nhé!Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath

25 tháng 7 2019

Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath

Bạn tham khảo nhé!