K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:

Đặt \(f(x)=x^2+mx+2\)

Theo định lý Bê-du về phép chia đa thức thì đa thức dư khi chia $f(x)$ cho $x-1$ và $x+1$ lần lượt là $f(1)$ và $f(-1)$

\(\Rightarrow \left\{\begin{matrix} R_1=f(1)=1+m+2=m+3\\ R_2=f(-1)=1-m+2=3-m\end{matrix}\right.\)

Vì $R_1=R_2$

\(\Leftrightarrow m+3=3-m\Rightarrow m=0\)

11 tháng 11 2018

vip

vip

vip

chúc bạn học ngu

2 tháng 7 2019

Áp dụng định lý Bê-du về phép chia đa thức , dư khi chia \(x^8\)cho \(x+\frac{1}{2}\)là \(\left(-\frac{1}{2}\right)^8=\frac{1}{2^8}\)

Do đó :\(x^8=\left(x+\frac{1}{2}\right)B\left(x\right)+\frac{1}{2^8}\)

\(\Rightarrow B\left(x\right)=\frac{x^8-\frac{1}{2^8}}{x+\frac{1}{2}}=\left(x-\frac{1}{2}\right)\left(x^2+\frac{1}{2^2}\right)\left(x^4+\frac{1}{2^4}\right)\)

Tiếp tục áp dụng định lý Bê-du , dư khi chia \(B\left(x\right)\)cho \(x+\frac{1}{2}\)là \(B\left(-\frac{1}{2}\right)\)

Do đó :

\(r_2=B\left(-\frac{1}{2}\right)=\left(\frac{-1}{2}-\frac{1}{2}\right)\left[\left(-\frac{1}{2}\right)^2+\frac{1}{2^2}\right]\left[\left(-\frac{1}{2^4}+\frac{1}{2^4}\right)\right]=-\frac{1}{16}\)

14 tháng 8 2015

ta có:9876543210 =864720*A + r1    (1)

r1=B*6420+ r2

r2=C*420+r3

r3=D*20=r4

thế vào lần lược ta đc:

9876543210=86420*A + 6420*B+ 420*C + 20*D +r4

=> 9876543210=20(4321*A+321*B+21*C+D)+r4

nhìn vào ta thấy r4 là phép chia có dư của 9876543210 cho 20 => r4=10

 

 

14 tháng 8 2015

Ngu mà giải !!!!!!!!!!!!!!!!!!!!

24 tháng 11 2018

nhanh nha mấy bn

2 tháng 5 2019

27 tháng 1 2022

a) Ta có f(x) - 5 \(⋮\)x + 1 

=> x3 + mx2 + nx + 2 - 5 \(⋮\)x + 1

=> x3 + mx2 + nx  - 3 \(⋮\)x + 1

=> x = - 1 là nghiệm đa thức 

Khi đó (-1)3 + m(-1)2 + n(-1) - 3 = 0

<=> m - n = 4 (1) 

Tương tự ta được f(x) - 8 \(⋮\)x + 2 

=> x3 + mx2 + nx - 6 \(⋮\) x + 2

=> x = -2 là nghiệm đa thức

=> (-2)3 + m(-2)2 + n(-2) - 6 = 0

<=> 2m - n = 7 (2) 

Từ (1)(2) => HPT \(\left\{{}\begin{matrix}m-n=4\\2m-n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\n=-1\end{matrix}\right.\)

Vậy đa thức đó là f(x) = x3 + 3x2 - x + 2  

27 tháng 1 2022

b)  f(x) - 7 \(⋮\)x + 1

=> x3 + mx + n - 7 \(⋮\) x + 1 

=> x = -1 là nghiệm đa thức 

=> (-1)3 + m(-1) + n - 7 = 0

<=> -m + n = 8 (1) 

Tương tự ta được : x3 + mx + n + 5 \(⋮\)x - 3 

=> x = 3 là nghiệm đa thức 

=> 33 + 3m + n + 5 = 0

<=> 3m + n = -32 (2) 

Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}3m+n=-32\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m=-40\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-10\\n=-2\end{matrix}\right.\)

Vậy f(x) = x3 - 10x -2