Tìm GTLN của: A = xyz(x + y)(y + z)(z + x)
với x; y; z là các số không âm và x + y + z = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{xyz}{x+y}\Rightarrow\frac{1}{A}=\frac{x+y}{xyz}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x+y}{xyz}=\frac{x}{xyz}+\frac{y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\ge\frac{\left(1+1\right)^2}{yz+xz}=\frac{4}{z\left(x+y\right)}\)(1)
Lại có \(z\left(x+y\right)\le\frac{\left(x+y+z\right)^2}{4}=\frac{9}{4}\)(theo AM-GM) => \(\frac{4}{z\left(x+y\right)}\ge\frac{16}{9}\)(2)
Từ (1) và (2) => \(\frac{x+y}{xyz}\ge\frac{4}{z\left(x+y\right)}\ge\frac{16}{9}\)=> \(\frac{x+y}{xyz}\ge\frac{16}{9}\)hay \(\frac{1}{A}\ge\frac{16}{9}\)
=> A ≤ 9/16. Đẳng thức xảy ra <=> z = 3/2 ; x = y = 3/4
Vậy MaxA = 9/16 <=> x = y = 3/4 ; z = 3/2
\(9=3^2=\left(x+y+z\right)^2\ge4\left(x+y\right)z\)
\(\rightarrow9.\frac{x+y}{xyz}\ge4.\frac{\left(x+y\right)^2}{xy}\ge4.\frac{4xy}{xy}=16\)
\(\rightarrow\frac{x+y}{xyz}\ge\frac{16}{9}\rightarrow\frac{xyz}{x+y}\le\frac{9}{16}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{3}{4};z=\frac{3}{2}\)
Sửa đề: \(A=xyz\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Áp dụng BĐT AM-GM ta có:
\(xyz\le\left(\dfrac{x+y+z}{3}\right)^3=\dfrac{\left(x+y+z\right)^3}{27}=\dfrac{1}{27}\)
Và \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\le\left(\dfrac{x+y+y+z+z+x}{3}\right)^3\)
\(=\left(\dfrac{2\left(x+y+z\right)}{3}\right)^3=\left(\dfrac{2}{3}\right)^3=\dfrac{8}{27}\)
Nhân theo vế 2 BĐT trên ta có:
\(A\le\dfrac{1}{27}\cdot\dfrac{8}{27}=\dfrac{8}{729}\)
Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)
\(2=x^2+y^2+z^2\ge y^2+z^2\ge2yz\Rightarrow yz\le1\)
\(P=x\left(1-yz\right)+y+z\Rightarrow P^2\le\left[x^2+\left(y+z\right)^2\right]\left[\left(1-yz\right)^2+1\right]\)
\(P^2\le\left(2+2yz\right)\left(y^2z^2-2yz+2\right)\)
\(P^2\le2\left(yz\right)^3-2\left(yz\right)^2+4=2y^2z^2\left(yz-1\right)+4\le4\)
\(\Rightarrow P\le2\)
\(P_{max}=2\) khi \(\left(x;y;z\right)=\left(0;1;1\right)\) và các hoán vị
Từ giả thiết, x+y=100-z\(\leq\)40
Theo BĐT Cô-si: \(3x.3y.z\le\left(\dfrac{3x+3y+z}{3}\right)^3=\left(\dfrac{2x+2y+100}{3}\right)^3\le\left(\dfrac{2.40+100}{3}\right)^3=216000\Rightarrow xyz\le24000\)
Dấu "=" xảy ra khi x=y=20 và z=60
Áp dụng bđt Cô si cho 3 số không âm ta được:
1 = x + y + z \(\ge3.\sqrt[3]{xyz}\) (*)
Do đó, 2 = (x + y) + (y + z) + (z + x) \(\ge3.\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) (**)
Dễ thấy 2 vế của (*) và (**) đều không âm nên nhân từng vế của chúng ta được: 2 \(\ge9.\sqrt[3]{A}\)
\(\Rightarrow A\le\left(\frac{2}{9}\right)^3\)
Dấu "=" xảy ra khi x = y = z = \(\frac{1}{3}\)
Vậy ...