K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2016

A = \(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+...+\frac{101}{\left(50.51\right)^2}\)

= \(\frac{3}{1.4}+\frac{5}{4.9}+...+\frac{101}{2500.2601}\)

= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{2500}-\frac{1}{2601}\)

= \(1-\frac{1}{2601}=\frac{2600}{2601}\)

24 tháng 10 2021

qwertyuiopasdfgggggghjkllzxcvbnmm,.//234567890-=`

24 tháng 10 2021
Chịu khó đọc lại đi dễ mà
20 tháng 1 2019

Câu b: Đặt  \(B=\left(\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}-1\right)\cdot\left(\frac{1}{4}-1\right)\cdot...\cdot\left(\frac{1}{2004}-1\right)\)

Ta có:  \(\frac{1}{2}-1=\left(-\frac{1}{2}\right);\frac{1}{3}-1=\left(-\frac{2}{3}\right);...;\frac{1}{2004}-1=\left(-\frac{2003}{2004}\right)\)

\(\Rightarrow B=\left(-\frac{1}{2}\right)\cdot\left(-\frac{2}{3}\right)\cdot...\cdot\left(-\frac{2003}{2004}\right)\)

Vì B là 2003 thừa số âm nhân lại với nhau nên B là số âm

\(\Rightarrow B=-\left(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2003}{2004}\right)=-\frac{1}{2004}\)

20 tháng 1 2019

Câu a: Đặt  \(A=1+2^4+2^8;B=1+2+2^2+...+2^{11}\)

\(\Rightarrow16A=2^4+2^8+2^{12}\)   \(\Rightarrow15A=2^{12}-1\)   \(\Rightarrow A=\frac{2^{12}-1}{15}\)    \(\left(1\right)\)

\(\Rightarrow2B=2+2^2+2^3+...+2^{12}\)   \(\Rightarrow B=2^{12}-1\)   \(\left(2\right)\)

Từ  \(\left(1\right)\) và    \(\left(2\right)\)   \(\Rightarrow A:B=\frac{2^{12}-1}{15}:\left(2^{12}-1\right)=\frac{1}{15}\)

28 tháng 8 2018

1) \(\left[6.\left(-\frac{1}{3}\right)^3-3\left(-\frac{1}{3}\right)+1\right]:\left(\frac{-1}{3}-1\right)\)

\(=\left[6.\frac{-1}{27}+1+1\right]:\left(\frac{-1}{3}-\frac{3}{3}\right)\)

\(=\left[\frac{-2}{9}+2\right]:\frac{-4}{3}\)

\(=\left[\frac{-2}{9}+\frac{18}{9}\right]:\frac{-4}{3}\)

\(=\frac{16}{9}:\frac{-4}{3}\)

\(=\frac{-4}{3}.\)

2)  \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(=1-\frac{1}{2019}\)

\(=\frac{2018}{2019}.\)

27 tháng 3 2017

Ta có:

\(A=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)

\(=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{2n+1}{n^2}-\frac{2n+1}{\left(n+1\right)^2}\)

\(=1-\frac{2n+1}{\left(n+1\right)^2}\)

Vậy \(A=\frac{2n+1}{\left(n+1\right)^2}\)

28 tháng 3 2017

SAI RỒI ĐÁP ÁN LÀ N^2/(N+1)^2

3 tháng 10 2015

\(2A=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\right).2\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

\(2A=1-\frac{1}{99}\)
\(2A=\frac{98}{99}\)

\(A=\frac{98}{99}:2\)

\(A=\frac{49}{99}\)

29 tháng 9 2018

\(\left(\frac{2}{3}\right)^6\)NHA CÁC BN

15 tháng 2 2018

Ta có : 

\(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{19}{\left(9.10\right)^2}\)

\(=\)\(\frac{3}{1.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\)\(\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)

\(=\)\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)

\(=\)\(1-\frac{1}{100}\)

\(=\)\(\frac{100}{100}-\frac{1}{100}\)

\(=\)\(\frac{100-1}{100}\)

\(=\)\(\frac{99}{100}\)

Vậy ...

Đặt A=\(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+..........+\frac{19}{\left(9.10\right)^2}\)

A=\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+.........+\frac{19}{9^2.10^2}\)

A=\(\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...........+\frac{19}{81.100}\)

A=\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+\frac{1}{16}-...............+\frac{1}{81}-\frac{1}{100}\)

A=\(\frac{1}{1}-\frac{1}{100}\)

A=\(\frac{99}{100}\)

Vậy tổng của \(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+..........+\frac{19}{\left(9.10\right)^2}\)là \(\frac{99}{100}\)

Chúc bn học tốt