K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2016

A = \(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+...+\frac{101}{\left(50.51\right)^2}\)

= \(\frac{3}{1.4}+\frac{5}{4.9}+...+\frac{101}{2500.2601}\)

= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{2500}-\frac{1}{2601}\)

= \(1-\frac{1}{2601}=\frac{2600}{2601}\)

28 tháng 8 2018

1) \(\left[6.\left(-\frac{1}{3}\right)^3-3\left(-\frac{1}{3}\right)+1\right]:\left(\frac{-1}{3}-1\right)\)

\(=\left[6.\frac{-1}{27}+1+1\right]:\left(\frac{-1}{3}-\frac{3}{3}\right)\)

\(=\left[\frac{-2}{9}+2\right]:\frac{-4}{3}\)

\(=\left[\frac{-2}{9}+\frac{18}{9}\right]:\frac{-4}{3}\)

\(=\frac{16}{9}:\frac{-4}{3}\)

\(=\frac{-4}{3}.\)

2)  \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(=1-\frac{1}{2019}\)

\(=\frac{2018}{2019}.\)

29 tháng 9 2018

\(\left(\frac{2}{3}\right)^6\)NHA CÁC BN

15 tháng 2 2018

Ta có : 

\(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{19}{\left(9.10\right)^2}\)

\(=\)\(\frac{3}{1.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\)\(\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)

\(=\)\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)

\(=\)\(1-\frac{1}{100}\)

\(=\)\(\frac{100}{100}-\frac{1}{100}\)

\(=\)\(\frac{100-1}{100}\)

\(=\)\(\frac{99}{100}\)

Vậy ...

Đặt A=\(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+..........+\frac{19}{\left(9.10\right)^2}\)

A=\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+.........+\frac{19}{9^2.10^2}\)

A=\(\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...........+\frac{19}{81.100}\)

A=\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+\frac{1}{16}-...............+\frac{1}{81}-\frac{1}{100}\)

A=\(\frac{1}{1}-\frac{1}{100}\)

A=\(\frac{99}{100}\)

Vậy tổng của \(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+..........+\frac{19}{\left(9.10\right)^2}\)là \(\frac{99}{100}\)

Chúc bn học tốt

13 tháng 11 2016

Ta co \(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{19}{\left(9.10\right)^{10}}\)

=\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

=\(\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)

=\(\frac{1}{1^2}-\frac{1}{10^2}\)

=\(\frac{99}{100}\) < 1

18 tháng 11 2016

\(\frac{1}{2}\left(\frac{3}{2}x+\frac{5}{4}\right)-\frac{1}{3}=\frac{1}{4}\)

\(\frac{1}{2}\left(\frac{3}{2}x+\frac{5}{4}\right)=\frac{1}{4}+\frac{1}{3}\)

\(\frac{1}{2}\left(\frac{3}{2}x+\frac{5}{4}\right)=\frac{7}{12}\)

\(\frac{3}{2}x+\frac{5}{4}=\frac{7}{12}\div\frac{1}{2}\)

\(\frac{3}{2}x+\frac{5}{4}=\frac{7}{6}\)

\(\frac{3}{2}x=\frac{7}{6}-\frac{5}{4}\)

\(\frac{3}{2}x=-\frac{1}{12}\)

\(x=-\frac{1}{12}\div\frac{3}{2}\)

\(x=-\frac{1}{18}\)

18 tháng 11 2016

số nhỏ quá

29 tháng 7 2021

\(A=9-\frac{3}{5}+\frac{2}{3}-7-\frac{7}{5}+\frac{3}{2}-3+\frac{9}{5}-\frac{5}{2}\)

\(=\left(9-7-3\right)+\left(\frac{9}{5}-\frac{7}{5}-\frac{3}{5}\right)+\left(\frac{3}{2}-\frac{5}{2}\right)\)

\(=-2-\frac{1}{5}=-\frac{11}{5}\)