Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left[6.\left(-\frac{1}{3}\right)^3-3\left(-\frac{1}{3}\right)+1\right]:\left(\frac{-1}{3}-1\right)\)
\(=\left[6.\frac{-1}{27}+1+1\right]:\left(\frac{-1}{3}-\frac{3}{3}\right)\)
\(=\left[\frac{-2}{9}+2\right]:\frac{-4}{3}\)
\(=\left[\frac{-2}{9}+\frac{18}{9}\right]:\frac{-4}{3}\)
\(=\frac{16}{9}:\frac{-4}{3}\)
\(=\frac{-4}{3}.\)
2) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}\)
\(=\frac{2018}{2019}.\)
Ta có :
\(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{19}{\left(9.10\right)^2}\)
\(=\)\(\frac{3}{1.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)
\(=\)\(\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
\(=\)\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)
\(=\)\(1-\frac{1}{100}\)
\(=\)\(\frac{100}{100}-\frac{1}{100}\)
\(=\)\(\frac{100-1}{100}\)
\(=\)\(\frac{99}{100}\)
Vậy ...
Đặt A=\(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+..........+\frac{19}{\left(9.10\right)^2}\)
A=\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+.........+\frac{19}{9^2.10^2}\)
A=\(\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...........+\frac{19}{81.100}\)
A=\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+\frac{1}{16}-...............+\frac{1}{81}-\frac{1}{100}\)
A=\(\frac{1}{1}-\frac{1}{100}\)
A=\(\frac{99}{100}\)
Vậy tổng của \(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+..........+\frac{19}{\left(9.10\right)^2}\)là \(\frac{99}{100}\)
Chúc bn học tốt
Ta co \(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{19}{\left(9.10\right)^{10}}\)
=\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)
=\(\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)
=\(\frac{1}{1^2}-\frac{1}{10^2}\)
=\(\frac{99}{100}\) < 1
\(\frac{1}{2}\left(\frac{3}{2}x+\frac{5}{4}\right)-\frac{1}{3}=\frac{1}{4}\)
\(\frac{1}{2}\left(\frac{3}{2}x+\frac{5}{4}\right)=\frac{1}{4}+\frac{1}{3}\)
\(\frac{1}{2}\left(\frac{3}{2}x+\frac{5}{4}\right)=\frac{7}{12}\)
\(\frac{3}{2}x+\frac{5}{4}=\frac{7}{12}\div\frac{1}{2}\)
\(\frac{3}{2}x+\frac{5}{4}=\frac{7}{6}\)
\(\frac{3}{2}x=\frac{7}{6}-\frac{5}{4}\)
\(\frac{3}{2}x=-\frac{1}{12}\)
\(x=-\frac{1}{12}\div\frac{3}{2}\)
\(x=-\frac{1}{18}\)
\(A=9-\frac{3}{5}+\frac{2}{3}-7-\frac{7}{5}+\frac{3}{2}-3+\frac{9}{5}-\frac{5}{2}\)
\(=\left(9-7-3\right)+\left(\frac{9}{5}-\frac{7}{5}-\frac{3}{5}\right)+\left(\frac{3}{2}-\frac{5}{2}\right)\)
\(=-2-\frac{1}{5}=-\frac{11}{5}\)
A = \(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+...+\frac{101}{\left(50.51\right)^2}\)
= \(\frac{3}{1.4}+\frac{5}{4.9}+...+\frac{101}{2500.2601}\)
= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{2500}-\frac{1}{2601}\)
= \(1-\frac{1}{2601}=\frac{2600}{2601}\)