- Giá trị của x để 2(3x+9)^2+5 đạt giá trị nhỏ nhất
- Hạng tử tự do của đa thức P(x)=4x^3-2x+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
a: P=2+25x^2-3x^3+4x^2-2x-x^3+6x^5
=6x^5-4x^3+29x^2-2x+2
b: bậc của P(x) là 5
c: hệ số lớn nhất là 6
Hệ số tự do là 2
P(-1)=-6+4+29+2+2=29+2=31
bài 1:
Ta thấy: \(\left(3x+9\right)^2\ge0\)
\(\Rightarrow2\left(3x+9\right)^2\ge0\)
\(\Rightarrow2\left(3x+9\right)^2+5\ge5\)
Dấu = khi \(3x+9=0\Leftrightarrow3x=-9\Leftrightarrow x=-3\)
Vậy x=-3 thì bt đạt GTNN
bài 2 :
hạng tử tự do là 5