K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2016

Do p; q là 2 số nguyên tố lẻ liên tiếp nên giả sử p = 2.k + 1; q = 2.k + 3 (k ϵ N)

Ta có: p + q = 2m

=> 2.k + 1 + 2.k + 3 = 2m

=> 4.k + 4 = 2m

=> 2.k + 2 = m

=> 2.(k + 1) = m

\(\Rightarrow m⋮2\)

Mà 1 < 2 < m => m là hợp số (đpcm)

4 tháng 11 2016

Thanks cậu nhiều >w<

4 tháng 11 2016

vì 2 nhân bao nhiêu cũng sẽ là hợp số.Ví dụ:

2 x 3 = 6 (là hợp số)

2 x 5 = 10 (là hợp số)

vậy thì suy ra m là hợp số.

NM
2 tháng 10 2021

không mất tổng quát ta giả sử p<q

vì đây là hai số lẻ liên tiếp nên : \(q=p+2\)

do đố ta có : \(2p+2=2n\Leftrightarrow n=p+1\)

do p nguyên tố lẻ nên p+1 là số chẵn nên n là hợp số

26 tháng 2 2015

Giả sử p < q

Do (p+q)/2 là trung bình cộng của p và q 

=> p < (p+q)/2 < q          (1)

mà p và q là 2 số nguyên tố liên tiếp nên giữa p và q là các hợp số  (2)

Từ (1) và (2) => (p+q)/2 là hợp số (ĐPCM)

22 tháng 3 2015

Vì p, q nguyên tố > 2 nên p và q là số lẻ

Do đó p + q là số chẵn nên p+q/2 chẵn nên p+q/2 chia hết cho 2

mà 2<p<q nên p+q/2>2 nên p+q/2 là hợp số 

9 tháng 11 2015

ta co:

hai số nguyên tố p và q là hai số lẻ liên tiếp

=>tổng hai số nguyên tố p và q là một số chẵn

=>p+q chia hết cho 2

=>(p+q)2 cia hết cho 2

=>mà 2 là số nguyên tố

=>(p+q)là hợp số

nhớ tick đó nha

24 tháng 12 2015

gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3; ƯCLN(2k+1;2k+3)

ta có : 2k+1 chia hết cho d

2k+3 chia hết cho d

-> 2k+3-(2k+1) chia hết cho d

-> 2k+3-2k-1 chia hết cho d

-> 2 chia hết cho d

vậy d thuộc Ư(2)={ 1;2 }

vì 2k+1 và 2k+3 là 2 số lẻ liên tiếp nên d không thể bằng 2

-> d=1

vậy 2k+1;2k+3 là 2 số nguyên tố cùng nhau 

vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau (đpcm)