cho hình bình hành ABCD có AD=2AB,góc a=60 độ.gọi E,F lần lượt trung điểm BC và AD.
Lấy M đối xứng của A qua B. chứng minh tứ giác BMCD la hình chữ nhật suy ra M,E,D thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: AF=AD2AF=AD2(F là trung điểm của AD)
BE=BC2BE=BC2(E là trung điểm của BC)
mà AD=BC(Hai cạnh đối trong hình bình hành ABCD)
nên AF=BE
Xét tứ giác AFEB có
AF//BE(AD//BC, F∈AD, E∈BC)
AF=BE(cmt)
Do đó: AFEB là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Ta có: AD=2⋅ABAD=2⋅AB(gt)
mà AD=2⋅AFAD=2⋅AF(F là trung điểm của AD)
nên AB=AF
Hình bình hành AFEB có AB=AF(cmt)
nên AFEB là hình thoi(Dấu hiệu nhận biết hình thoi)
⇒Hai đường chéo AE và BF vuông góc với nhau tại trung điểm của mỗi đường(Định lí hình thoi)
hay AE⊥BF(đpcm)
b) Ta có: AFEB là hình thoi(cmt)
nên AF=FE=EB=AB và ˆA=ˆFEBA^=FEB^(Số đo của các cạnh và các góc trong hình thoi AFEB)
hay ˆFEB=600FEB^=600
Xét ΔFEB có FE=EB(cmt)
nen ΔFEB cân tại E(Định nghĩa tam giác cân)
Xét ΔFEB cân tại E có ˆFEB=600FEB^=600(cmt)
nên ΔFEB đều(Dấu hiệu nhận biết tam giác cân)
⇒ˆBFE=600BFE^=600(Số đo của một góc trong ΔFEB đều)
Ta có: AB//FE(hai cạnh đối trong hình thoi ABEF)
nên ˆA=ˆDFEA^=DFE^(hai góc đồng vị)
hay ˆDFE = 600DFE^ = 600
Ta có: tia FE nằm giữa hai tia FB,FD
nên ˆDFB=ˆDFE+ˆBFEDFB^=DFE^+BFE^
⇔ˆDFB=600+600=1200⇔DFB^=600+600=1200(1)
Ta có: AD//BC(hai cạnh đối trong hình bình hành ABCD)
nên ˆA+ˆD=1800A^+D^=1800(hai góc trong cùng phía bù nhau)
hay ˆD=1800−600=1200D^=1800−600=1200(2)
Từ (1) và (2) suy ra ˆDFB=ˆDDFB^=D^
Xét tứ giác BFDC có
FD//BC(AD//BC, F∈AD)
nên BFDC là hình thang có hai đáy là FD và BC(Định nghĩa hình thang)
Hình thang BFDC có ˆDFB=ˆDDFB^=D^(cmt)
nên BFDC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
Nguồn: https://hoc24.vn/hoi-dap/tim-kiem?id=136634&q=B%C3%A0i%202.%20Cho%20h%C3%ACnh%20b%C3%ACnh%20h%C3%A0nh%20ABCD%20c%C3%B3%20AD%20%3D%202AB%2C%20%C3%82%20%3D%2060%20%C4%91%E1%BB%99.%20G%E1%BB%8Di%20E%20v%C3%A0%20F%20l%E1%BA%A7n%20l%C6%B0%E1%BB%A3t%20l%C3%A0%20trung%20%C4%91i%E1%BB%83m%20c%E1%BB%A7a%20BC%20v%C3%A0%20ADa%29%20CM%3A%20AE%20vu%C3%B4ng%20g%C3%B3c%20BFb%29%20CM%20t%E1%BB%A9%20gi%C3%A1c%20BFDC%20l%C3%A0%20h%C3%ACnh%20thang%20c%C3%A2nc%29%20L%E1%BA%A5y%20%C4%91i%E1%BB%83m%20M%20%C4%91%E1%BB%91i%20x%E1%BB%A9ng%20c%E1%BB%A7a%20A%20qua%20B.%20CM%20t%E1%BB%A9%20gi%C3%A1c%20BMCD%20l%C3%A0%20h%C3%ACnh%20ch%E1%BB%AF%20nh%E1%BA%ADtd%29%20CM%20M%2C%20E%2C%20D%20th%E1%BA%B3ng%20h%C3%A0ng
a) Sửa đề: Cm AE//CF
Ta có: \(AF=FB=\dfrac{AD}{2}\)(F là trung điểm của AD)
\(BE=EC=\dfrac{BC}{2}\)(E là trung điểm của BC)
mà AD=BC(ABCD là hình bình hành)
nên AF=FB=BE=EC
Xét tứ giác AFCE có
AF//CE(gt)
AF=CE(cmt)
Do đó: AFCE là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: AE//CF(Hai cạnh đối của hình bình hành AFCE)
b) Xét tứ giác CDFE có
DF=FE=EC=DC(\(=\dfrac{1}{2}BC\))
nên CDFE là hình thoi(Dấu hiệu nhận biết hình thoi)
c) Xét tứ giác BMCD có
BM//CD(gt)
BM=CD(=AB)
Do đó: BMCD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Xét hbh ABCD có:
F là trung điểm của AD (gt)
E là trung điểm của BC (gt)
=> EF là đường trung bình của hbh ABCD
=> AB//EF//DC (t/c đướng trung bình của hbh)
Ta có: hbh ABCD
=> Góc A = Góc C và góc B = góc D( t/c hbh)
Ta có: EF//DC(cmt) => góc AFE = góc ADC ( cặp góc đồng vị)
Mà Góc B = Góc ADC (cmt)
=> Góc B = góc AFE (1)
Ta có: EF//DC(cmt) => Góc BEF = góc BCD (cặp góc đồng vị)
Mà góc A = góc BCD
=> góc A =góc BEF (2)
Từ (1) và (2)
=> Tứ giác ABEF là hình bình hành (5) ( các cặp góc đối bằng nhau)
Ta có: AD = 2AB hay AB = \(\frac{1}{2}\)AD (3)
mà AF = \(\frac{1}{2}\)AD(4)
Từ (3) và (4) => AB = AF (6)
Từ(5) và (6) => tứ giác ABEF là hình thoi ( hbh + 2 cạnh kề bằng nhau)
=> AE vuông góc với BF
Ở CÂU a) bạn có thể cm AB//EF và AF// BE đề suy ra hbh nha
b) Gói O là giao điểm của AE và BF
Ta có: tứ giác ABEF là hình thoi => BF là tia phân giác của góc B ( t/c hình thoi)
Ta có: góc A = góc BEF (cmt)
Mà góc A = 60 độ (gt)
=> góc A = góc BEF = 60 độ
Xét tứ giác ABEF có:
góc BAF + góc ABE + góc BEF + góc AFE = 360 độ
=> 60 độ + góc ABE + 60 độ + góc AFE = 360 độ
=> góc ABE + góc AFE = 360 độ - 60 độ - 60 độ = 240 độ
Mà góc ABE = góc AFE
=> góc ABE = góc AFE = \(\frac{240}{2}\)=120 độ
Ta có: BF là tia p/g của góc B => góc ABF = góc EBF = \(\frac{120}{2}\) 60 độ
Vậy góc EBF = góc BEF = 60 độ ( góc A = góc BEF đã cm ở câu a)
Mà góc BEF = góc BCD ( đã cm ở câu a)
=> góc EBF = góc BCD (7)
Ta có: AD//BC( tứ giác ABCD là hbh)=> FD//BC=> tứ giác FDCB là hình thang (8)
Từ (7) và (8) => tứ giác FDCB là hinh thang cân
Câu c và d dễ lắm, bạn cố suy nghĩ nha, nhưng mình nói thật bài này rất rất rất dễ luôn đó
c)
c) Ta có: góc A = góc ABF = 60 độ ( cm ở câu b )
=> AF = FB ( quan hệ giữa góc và cạnh đối diện)
Mà AF = FD ( f là trung điểm của AD)
=> FB = FD
=> tam giác DFB cân tại F
=> góc FBD = góc FDB (9)
Ta có: AD//BC ( cmt)
=> Góc FDB = góc CBD ( cặp góc slt)(10)
Từ (9) và (10) => góc FBD=góc CBD
Mà góc FBD+ góc CBD = 60 độ
=> góc FBD = góc CBD = \(\frac{60}{2}\)= 30 độ
Mà góc FDB = góc FBD
=> góc FDB = 30 độ
d) Ta có: B là trung điểm của AM => A,B,M thẳng hàng
Ta có: B là trung điểm của AM ( M đối xứng với A qua B) => AB = BM
Mà AB = DC ( tứ giác ABCD là hbh)
DC = BM(11)
Ta có: AB//DC( tứ giác ACD là hbh)
Mà A,B,M thẳng hàng
=> BM//DC (12)
Tứ (11) và (12)
=> tứ giác BMCD là hình bình hành (13)
Ta có: góc ABE = góc AFE = 120 độ (cm ở câu b)
Mà góc ADC bằng 2 góc này
=> góc ADC = 120 độ
Xét góc ADC có:
góc ADB + góc BDC = 120 độ
=> 30 độ + góc BDC = 120 độ
=> góc BDC = 120 độ - 30 độ = 90 độ (14)
Từ (13) và (14)
=> tứ giác BMCD là hình chữ nhật ( hbh+ 1 góc vuông)
=> E là trung điểm của BC và BC ( t/c hình chữ nhật)
Có E là trung điểm của MD => 3 điểm D,E,M thẳng hàng
a) - Vì ABCD là hình bình hành(gt)
\(\Rightarrow BC
//AD\)và BC=AD
Mà \(E\in BC,F\in AD\)và \(BE=\frac{1}{2}BC,\text{AF}=\frac{1}{2}AD\)(gt)
Nên\(BE//\text{AF}\)và BE=AF
=> ABEF là hình bình hành (1)
Mặt khác AD=2AB(gt)
=>\(AB=\frac{AD}{2}\)
\(\text{AF}=\frac{AD}{2}\left(gt\right)\)
Nên AB=AF(2)
Từ (1) và (2) => ABEF là hình thoi
=> \(AE\perp BF\)
b) Ta có BC//FD(BC//AD,F thuộc AD)
=> BCDF là hình thang (3)
- Vì ABCD là hình bình hành(gt)
Nên \(\widehat{BAD}=\widehat{C}=60^o\)(4)
- Ta có : \(\widehat{B\text{AF}}+\widehat{ABE}=180^0\)(Trong cùng phía,BC//AD)
\(\widehat{ABE}=180^0-\widehat{B\text{AF}}\)
\(\widehat{ABE}=180^o-60^o=120^o\)
Mà ABEF là hình thoi
=> \(\widehat{B_1}=\widehat{\widehat{\frac{ABE}{2}}=\frac{120^o}{2}=60^o}\)(5)
Từ (4) và (5) => \(\widehat{C}=\widehat{B_1}\)(6)
Từ (3) và (6)
=> BCDF là hình thang cân
c) Vì ABCD là hình bình hành(gt)
Nên AB//CD và AB=CD
Mà M thuộc AB và AB=BM(M đối xứng với A qua B)
=> B là trung điểm của AB
Nên BM//CD và BM=CD
=> BMCD là hình bình hành (7)
- Xét \(\Delta ABF\)có ;
AB=AF(cmt)
=> \(\Delta ABF\)cân tại A
Mà \(\widehat{B\text{AF}}=60^o\)(gt)
Nên \(\Delta ABF\)đều
=> AB=BF=AF
- Xét \(\Delta ABD\)có:
BF là đường trung tuyến ứng với AD (FA=FD)
\(BF=\frac{1}{2}AD\)(BF=FA mà \(FA=\frac{1}{2}AD\))
Nên \(\Delta ABD\)vuông tại B
=> \(\widehat{MBD}=90^0\)(8)
Từ (7) và (8) =>BMCD là hình chữ nhật
Mà E là trung điểm của BC(gt)
Nên E là trung điểm của MD
Hay E,M,D thẳng hàng
Câu hỏi của Yaden Yuki - Toán lớp 8 - Học toán với OnlineMath Em tham khảo bài làm ở link này nhé!
Xét tứ giác BMCD có
BM//CD
BM=CD
Do đó: BMCD là hình bình hành
Suy ra: Hai đường chéo BC và MD cắt nhau tại trung điểm của mỗi đường
mà E là trung điểm của BC
nên E là trung điểm của MD
hay M,E,D thẳng hàng