K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác BMCD có 

BM//CD

BM=CD

Do đó: BMCD là hình bình hành

Suy ra: Hai đường chéo BC và MD cắt nhau tại trung điểm của mỗi đường

mà E là trung điểm của BC

nên E là trung điểm của MD

hay M,E,D thẳng hàng

1 tháng 3 2021

a) Ta có: AF=AD2AF=AD2(F là trung điểm của AD)

BE=BC2BE=BC2(E là trung điểm của BC)

mà AD=BC(Hai cạnh đối trong hình bình hành ABCD)

nên AF=BE

Xét tứ giác AFEB có 

AF//BE(AD//BC, F∈AD, E∈BC)

AF=BE(cmt)

Do đó: AFEB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Ta có: AD=2⋅ABAD=2⋅AB(gt)

mà AD=2⋅AFAD=2⋅AF(F là trung điểm của AD)

nên AB=AF

Hình bình hành AFEB có AB=AF(cmt)

nên AFEB là hình thoi(Dấu hiệu nhận biết hình thoi)

⇒Hai đường chéo AE và BF vuông góc với nhau tại trung điểm của mỗi đường(Định lí hình thoi)

hay AE⊥BF(đpcm)

b) Ta có: AFEB là hình thoi(cmt)

nên AF=FE=EB=AB và ˆA=ˆFEBA^=FEB^(Số đo của các cạnh và các góc trong hình thoi AFEB)

hay ˆFEB=600FEB^=600

Xét ΔFEB có FE=EB(cmt)

nen ΔFEB cân tại E(Định nghĩa tam giác cân)

Xét ΔFEB cân tại E có ˆFEB=600FEB^=600(cmt)

nên ΔFEB đều(Dấu hiệu nhận biết tam giác cân)

ˆBFE=600BFE^=600(Số đo của một góc trong ΔFEB đều)

Ta có: AB//FE(hai cạnh đối trong hình thoi ABEF)

nên ˆA=ˆDFEA^=DFE^(hai góc đồng vị)

hay ˆDFE = 600DFE^ = 600

Ta có: tia FE nằm giữa hai tia FB,FD

nên ˆDFB=ˆDFE+ˆBFEDFB^=DFE^+BFE^

⇔ˆDFB=600+600=1200⇔DFB^=600+600=1200(1)

Ta có: AD//BC(hai cạnh đối trong hình bình hành ABCD)

nên ˆA+ˆD=1800A^+D^=1800(hai góc trong cùng phía bù nhau)

hay ˆD=1800−600=1200D^=1800−600=1200(2)

Từ (1) và (2) suy ra ˆDFB=ˆDDFB^=D^

Xét tứ giác BFDC có 

FD//BC(AD//BC, F∈AD)

nên BFDC là hình thang có hai đáy là FD và BC(Định nghĩa hình thang)

Hình thang BFDC có ˆDFB=ˆDDFB^=D^(cmt)

nên BFDC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

Nguồn: https://hoc24.vn/hoi-dap/tim-kiem?id=136634&q=B%C3%A0i%202.%20Cho%20h%C3%ACnh%20b%C3%ACnh%20h%C3%A0nh%20ABCD%20c%C3%B3%20AD%20%3D%202AB%2C%20%C3%82%20%3D%2060%20%C4%91%E1%BB%99.%20G%E1%BB%8Di%20E%20v%C3%A0%20F%20l%E1%BA%A7n%20l%C6%B0%E1%BB%A3t%20l%C3%A0%20trung%20%C4%91i%E1%BB%83m%20c%E1%BB%A7a%20BC%20v%C3%A0%20ADa%29%20CM%3A%20AE%20vu%C3%B4ng%20g%C3%B3c%20BFb%29%20CM%20t%E1%BB%A9%20gi%C3%A1c%20BFDC%20l%C3%A0%20h%C3%ACnh%20thang%20c%C3%A2nc%29%20L%E1%BA%A5y%20%C4%91i%E1%BB%83m%20M%20%C4%91%E1%BB%91i%20x%E1%BB%A9ng%20c%E1%BB%A7a%20A%20qua%20B.%20CM%20t%E1%BB%A9%20gi%C3%A1c%20BMCD%20l%C3%A0%20h%C3%ACnh%20ch%E1%BB%AF%20nh%E1%BA%ADtd%29%20CM%20M%2C%20E%2C%20D%20th%E1%BA%B3ng%20h%C3%A0ng

a) Sửa đề: Cm AE//CF

Ta có: \(AF=FB=\dfrac{AD}{2}\)(F là trung điểm của AD)

\(BE=EC=\dfrac{BC}{2}\)(E là trung điểm của BC)

mà AD=BC(ABCD là hình bình hành)

nên AF=FB=BE=EC

Xét tứ giác AFCE có 

AF//CE(gt)

AF=CE(cmt)

Do đó: AFCE là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: AE//CF(Hai cạnh đối của hình bình hành AFCE)

b) Xét tứ giác CDFE có 

DF=FE=EC=DC(\(=\dfrac{1}{2}BC\))

nên CDFE là hình thoi(Dấu hiệu nhận biết hình thoi)

c) Xét tứ giác BMCD có 

BM//CD(gt)

BM=CD(=AB)

Do đó: BMCD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

19 tháng 11 2016

Xét hbh ABCD có:

F là trung điểm của AD (gt)

E là trung điểm của BC (gt)

=> EF là đường trung bình của hbh ABCD 

=> AB//EF//DC (t/c đướng trung bình của hbh)

Ta có: hbh ABCD

=> Góc A = Góc C và góc B = góc D( t/c hbh)

Ta có: EF//DC(cmt) => góc AFE = góc ADC ( cặp góc đồng vị)

Mà Góc B = Góc ADC (cmt)

  => Góc B = góc AFE (1)

Ta có: EF//DC(cmt) => Góc BEF = góc BCD (cặp góc đồng vị)

Mà góc A = góc BCD 

  => góc A =góc BEF (2)

Từ (1) và (2)

  => Tứ giác ABEF là hình bình hành (5) ( các cặp góc đối bằng nhau)

Ta có: AD = 2AB hay AB = \(\frac{1}{2}\)AD (3)

 mà AF = \(\frac{1}{2}\)AD(4)

 Từ (3) và (4) => AB = AF (6)

Từ(5) và (6) => tứ giác ABEF là hình thoi ( hbh + 2 cạnh kề bằng nhau)

=> AE vuông góc với BF

Ở CÂU a) bạn có thể cm AB//EF và  AF// BE đề suy ra hbh nha

b) Gói O là giao điểm của AE và BF

Ta có: tứ giác ABEF là hình thoi => BF là tia phân giác của góc B ( t/c hình thoi)

Ta có: góc A = góc BEF (cmt)

Mà góc A = 60 độ (gt) 

=> góc A = góc BEF = 60 độ

Xét tứ giác ABEF có:

 góc BAF + góc ABE + góc BEF + góc AFE = 360 độ

=> 60 độ + góc ABE + 60 độ + góc AFE = 360 độ

=> góc ABE + góc  AFE = 360 độ - 60 độ - 60 độ = 240 độ

Mà góc ABE = góc AFE 

=> góc ABE = góc AFE = \(\frac{240}{2}\)=120 độ

Ta có: BF là tia p/g của góc B => góc ABF = góc EBF = \(\frac{120}{2}\) 60 độ

Vậy góc EBF = góc BEF = 60 độ ( góc A  = góc BEF đã cm ở câu a)

Mà góc BEF = góc BCD ( đã cm ở câu a)

=> góc EBF = góc BCD (7)

Ta có: AD//BC( tứ giác ABCD là hbh)=> FD//BC=> tứ giác FDCB là hình thang (8)

 Từ (7) và (8) => tứ giác FDCB là hinh thang cân

Câu c và d dễ lắm, bạn cố suy nghĩ nha, nhưng mình nói thật bài này rất rất rất dễ luôn đó

c) 

     

19 tháng 11 2016

c) Ta có: góc A = góc ABF = 60 độ ( cm ở câu b )

  => AF = FB ( quan hệ giữa góc và cạnh đối diện)

Mà AF = FD ( f là trung điểm của AD)

=> FB = FD

=> tam giác DFB cân tại F

=> góc FBD = góc FDB (9)

Ta có: AD//BC ( cmt)

=> Góc FDB = góc CBD ( cặp góc slt)(10)

Từ (9) và (10) => góc FBD=góc CBD

Mà góc FBD+ góc CBD = 60 độ

=> góc FBD = góc CBD = \(\frac{60}{2}\)= 30 độ

Mà góc FDB = góc FBD

=> góc FDB = 30 độ

d) Ta có: B là trung điểm của AM => A,B,M thẳng hàng

Ta có: B là trung điểm của AM ( M đối xứng với A qua B) => AB = BM

  Mà AB = DC ( tứ giác ABCD là hbh)

DC = BM(11)

Ta có: AB//DC( tứ giác ACD là hbh)

Mà A,B,M thẳng hàng

=> BM//DC (12)

Tứ (11) và (12)

=> tứ giác BMCD là hình bình hành (13)

Ta có: góc ABE = góc AFE = 120 độ (cm ở câu b)

Mà góc ADC bằng 2 góc này

=> góc ADC = 120 độ

Xét góc ADC có:

góc ADB + góc BDC = 120 độ

=> 30 độ + góc BDC = 120 độ

=> góc BDC = 120 độ - 30 độ = 90 độ (14) 

Từ (13) và (14)

=> tứ giác BMCD là hình chữ nhật ( hbh+ 1 góc vuông)

=> E là trung điểm của BC và BC ( t/c hình chữ nhật)

Có  E là trung điểm của MD => 3 điểm D,E,M thẳng hàng

6 tháng 11 2018

B A M E F D C 1 60 độ

a) - Vì ABCD là hình bình hành(gt)
\(\Rightarrow BC //AD\)và BC=AD
Mà \(E\in BC,F\in AD\)và \(BE=\frac{1}{2}BC,\text{AF}=\frac{1}{2}AD\)(gt)

Nên\(BE//\text{AF}\)và BE=AF
=> ABEF là hình bình hành (1)
Mặt khác AD=2AB(gt)
=>\(AB=\frac{AD}{2}\)

\(\text{AF}=\frac{AD}{2}\left(gt\right)\)

Nên AB=AF(2)
Từ (1) và (2) => ABEF là hình thoi
=> \(AE\perp BF\)
b) Ta có BC//FD(BC//AD,F thuộc AD)
=> BCDF là hình thang (3)
- Vì ABCD là hình bình hành(gt)
Nên \(\widehat{BAD}=\widehat{C}=60^o\)(4)
- Ta có : \(\widehat{B\text{AF}}+\widehat{ABE}=180^0\)(Trong cùng phía,BC//AD)
                          \(\widehat{ABE}=180^0-\widehat{B\text{AF}}\)

                              \(\widehat{ABE}=180^o-60^o=120^o\)

Mà ABEF là hình thoi

=> \(\widehat{B_1}=\widehat{\widehat{\frac{ABE}{2}}=\frac{120^o}{2}=60^o}\)(5)
Từ (4) và (5) => \(\widehat{C}=\widehat{B_1}\)(6)
Từ (3) và (6)
=> BCDF là hình thang cân
c) Vì ABCD là hình bình hành(gt)
Nên AB//CD và AB=CD
Mà M thuộc AB và AB=BM(M đối xứng với A qua B)
=> B là trung điểm của AB

Nên BM//CD và BM=CD

=> BMCD là hình bình hành (7)

- Xét \(\Delta ABF\)có ;
AB=AF(cmt)

=> \(\Delta ABF\)cân tại A
Mà \(\widehat{B\text{AF}}=60^o\)(gt)

Nên \(\Delta ABF\)đều

=> AB=BF=AF
- Xét \(\Delta ABD\)có:
BF là đường trung tuyến ứng với AD (FA=FD)
\(BF=\frac{1}{2}AD\)(BF=FA mà \(FA=\frac{1}{2}AD\))
Nên \(\Delta ABD\)vuông tại B
=> \(\widehat{MBD}=90^0\)(8)
Từ (7) và (8) =>BMCD là hình chữ nhật
Mà E là trung điểm của BC(gt)
Nên E là trung điểm của MD

Hay E,M,D thẳng hàng

6 tháng 11 2018

Câu hỏi của Yaden Yuki - Toán lớp 8 - Học toán với OnlineMath Em tham khảo bài làm ở link này nhé!

15 tháng 10 2016

bạn lấy bài này ở đâu z

 

26 tháng 10 2016

thầy giao cho mik