K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 8 2021

Lời giải:
a. 

$y=(2m+5)x+m+3, \forall m$

$\Leftrightarrow 2mx+5x+m+3-y=0, \forall m$

$\Leftrightarrow m(2x+1)+(5x+3-y)=0, \forall m$

\(\Leftrightarrow \left\{\begin{matrix} 2x+1=0\\ 5x+3-y=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{-1}{2}\\ y=\frac{1}{2}\end{matrix}\right.\)

Vậy đt luôn đi qua điểm $(\frac{-1}{2}, \frac{1}{2})$ với mọi $m$

b.

$y=m(x+2), \forall m$

$\Leftrightarrow m(x+2)-y=0, \forall m$

\(\Leftrightarrow \left\{\begin{matrix} x+2=0\\ y=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-2\\ y=0\end{matrix}\right.\) 

Vậy đt luôn đi qua điểm $(-2,0)$ với mọi $m$.

9 tháng 7 2021

Chứng minh công thức tổng quát phương trình đi qua 2 điểm cực trị:

giả sử hàm bậc 3: \(y=ax^3+bxx^2+cx+d\left(a\ne0\right)\) có 2 điểm cực trị x1;x2

Ta đi tìm số dư 1 cách tổng quát: 

Ta có: \(y'=3ax^2+2bx+c-và-y''=6ax+b\) 

Xét phép chia giữa y' và y'' ta có: \(y=y'\left(\dfrac{1}{3}x+\dfrac{b}{9a}\right)+g\left(x\right)\left(1\right)\) là phường trình đi qua 2 điểm cực trị của đồ thị hàm số bậc 3

từ (1) Ta có: \(y=y'\dfrac{3ax+b}{9a}+g\left(x\right)-hay-y=y'\dfrac{6ax+2b}{18a}g\left(x\right)\) 

Từ đây dễ suy ra: \(g\left(x\right)=y-\dfrac{y'.y''}{18a}\left(công-thức-tổng-quát\right)\) ( dĩ nhiên bạn chỉ cần nhớ cái này ) 

áp dụng vào bài toán ta có: 

\(2x^3+3\left(m-1\right)x^2+6m\left(1-2m\right)x-\left(6x^2+6\left(m-1\right)x+6m\left(1-2m\right)\right).\dfrac{12x+6\left(m-1\right)}{18.2}\)

Gán:  \(\left\{{}\begin{matrix}x=i\\m=10\end{matrix}\right.\) => 1710-841i

\(\Rightarrow y=4m\left(-2m-1\right)x+17m^2+m\) bài toán quay trở về bài toán đơn giản bạn giải nốt là oke

 

 

 

9 tháng 7 2021

Khiếp học ghê như vầy bảo dạy người ta thì kêu thôi, sợ sót kiến thức :)))?

2 tháng 5 2020

a) giả sử đường thẳng trên đi qua điểm cố định A ( x0 ; y0 )

\(\Rightarrow y_0=\left(m-2\right)x_0+3\) với mọi m

\(\Leftrightarrow x_0m-\left(y_0+2x_0-3\right)=0\)với mọi m

\(\Leftrightarrow\hept{\begin{cases}x_0=0\\y_0+2x_0-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x_0=0\\y_0=3\end{cases}}}\)

Vậy điểm cố định là ( 0 ; 3 )

2 tháng 5 2020

tương tự : b) ( -1 ; 2 )

c) ( -2 ; 1 )

16 tháng 4 2020

Điều kiện cần và đủ để đường thẳng \(\left(m-2\right)x+\left(m-1\right)y=1\) đi qua điểm cố định \(N\left(x_0;y_0\right)\)với mọi m là:

\(\left(m-2\right)x_0+\left(m-1\right)y_0=1\forall m\)

\(\Leftrightarrow mx_0-2x_0+my_0-y_0-1=0\forall m\)

\(\Leftrightarrow\left(x_0+y_0\right)m-\left(2x_0+y_0+1\right)=0\forall m\)

\(\Leftrightarrow\hept{\begin{cases}x_0+y_0=0\\2x_0+y_0+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=-1\\y_0=1\end{cases}}\)

Vậy các đường thẳng \(\left(m-2\right)x+\left(m-1\right)y=1\) luôn đi qua điểm cố định N(-1; 1)

16 tháng 4 2020

n=45+9=

11 tháng 9 2016

a/ Gọi điểm cố định là N(x0;y0)

Suy ra N thuộc đồ thị hàm số y = (m-2)x+3 nên : 

\(y_0=\left(m-2\right)x_0+3\Leftrightarrow mx_0-\left(2x_0+y_0-3\right)=0\)

Vì đths luôn đi qua N với mọi x,y nên : 

\(\begin{cases}x_0=0\\2x_0+y_0-3=0\end{cases}\) \(\Leftrightarrow\begin{cases}x_0=0\\y_0=3\end{cases}\)

Vậy điểm cố định là \(N\left(0;3\right)\)

b,c tương tự

 

 

14 tháng 9 2016

Toán lớp 9Toán lớp 9