K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2016

Các số đó là: 63;65;67

31 tháng 10 2016

liên tiếp mà bạn

3 tháng 3 2016

a) 34 và 35

b) 12, 13 và 14

c) 14, 16 và 18

d) 63, 65 và 67

e) 50

23 tháng 8 2016

a,34 và 35

b, 12,13,14

c,14,16,18

d,63,65,67

e,50

9 tháng 11 2015

2 x 3 x 5 x 7 x 13 <=> 13 x 14 x15 <=> 2730

tick mình nhé !!!

9 tháng 11 2015

13 ; 1 và 15

Tick ủng hộ mik nhé !!!

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

7 tháng 9 2017

bang 3

11 tháng 1 2017

4 số đó là 6;7;8;9

mình nha

11 tháng 1 2017

 Bốn số đó là : 6 ; 7 ; 8 ; 9

3 tháng 11 2018

600=600.1=300.2=200.3=159.4=120.5=100.6=75.8=60.10=50.12=40.15=30.20=25.24

Trong các tích đó chỉ có hai soso25 và 24 là 2 số liên tiếp và có tích là 600

Vậy 2 số tự nhiên lien tiếp cần tìm là 24 và 25

3 tháng 11 2018

Gọi x là số tự nhiên thứ nhất (x € N*); số thứ hai là x + 1.

Ta có:

x(x + 1) = 600

<=> x2 + x - 600 = 0

Ap dụng công thức nghiệm phương trình bậc 2 ta có:

a = 1; b = 1; c = -600

=> Δ = b - 4ac = 1 + 2400 = 2401

=> √Δ = 49

=> x1 = (-b - √Δ) / 2a = (-1 - 49) / 2 = -25 (l)

x2 = (-b + √Δ) / 2a = (-1 + 49) / 2 = 24 (n)

Vậy 2 số tự nhiên cần tìm là 24 và x + 1 = 24 + 1 = 25

29 tháng 8 2018

Gọi 4 số tự nhiên liên tiếp lần lượt là n ; n + 1 ; n + 2 ; n + 3

Ta có:

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=24\)

\(\Rightarrow n\left(n+1\right)\left(n+2\right)\left(n+3\right)-24=0\)

\(\Rightarrow\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]-24=0\)

\(\Rightarrow\left(n^2+3n\right)\left(n^2+3n+2\right)-24=0\)

Đặt \(n^2+3n+1=a\)

\(\Rightarrow\left(a-1\right)\left(a+1\right)-24=0\)

\(\Rightarrow a^2-1-24=0\)

\(\Rightarrow a^2-25=0\)

\(\Rightarrow\left(a-5\right)\left(a+5\right)=0\)

\(\Rightarrow\left(n^2+3n+1-5\right)\left(n^2+3n+1+5\right)=0\)

\(\Rightarrow\left(n^2+3n-4\right)\left(n^2+3n+6\right)=0\)

\(\Rightarrow\left(n^2-n+4n-4\right)\left(n^2+3n+6\right)=0\)

\(\Rightarrow\left[n\left(n-1\right)+4\left(n-1\right)\right]\left(n^2+3n+6\right)=0\)

\(\Rightarrow\left(n-1\right)\left(n+4\right)\left(n^2+3n+6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}n-1=0\\n+4=0\\n^2+3n+6=0\end{matrix}\right.\)

Mà ta có:

\(n^2+3n+6\)

\(=n^2+2.n\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}+6\)

\(=\left(n+\dfrac{3}{2}\right)^2+\dfrac{15}{4}\)

\(\left(n+\dfrac{3}{2}\right)^2\ge0\) với mọi n

\(\Rightarrow\left(n+\dfrac{3}{2}\right)^2+\dfrac{15}{4}\ge\dfrac{15}{4}\)

\(\Rightarrow n^2+3n+6\) vô nghiệm

\(\Rightarrow\left[{}\begin{matrix}n-1=0\\n+4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}n=1\\n=-4\end{matrix}\right.\)

Vì n là số tự nhiên

=> n = 1

Vậy 4 số tự nhiên liên tiếp có tích là 24 lần lượt là 1 ; 2 ; 3 ; 4

9 tháng 11 2015

tick cho mk 1 cái cho tròn