K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2016

Có: p2 - 1 = p2 + p - p - 1 = (p2+p) - (p+1) = p(p+1) - (p+1) = (p-1).(p+1)

  • p là số nguyên tố lớn hơn 3 => p-1 và p+2 là 2 số chẵn liên tiếp.=> (p-1)(p+1) \(⋮\) 8 (1)
  • p là số nguyên tố lớn 3 => p có dạng 3k+1;3k+2

Với p = 3k+1 => (p-1)(p+1) = (3k+1-1)(3k+2+1) = 3k(p+1) \(⋮\) 3 (2)

Với p = 3k+2 => (p-1)(p+1) = (p-1)(3k+2+1) = (p-1)(k+1).3 \(⋮\) 3 (3)

Từ (1)(2)(3) => p2 - 1 \(⋮\) 3;8

Mà (3;8) = 1 => p2 - 1 \(⋮\) 24

31 tháng 10 2016

lớp 9 học Hđt r` p2-12=(p-1)(p+1) luôn, cách làm k phù hợp vs lừa tuổi

14 tháng 9 2023

mình chỉ biết bài 4 thôi
Bài 4: Vì tổng bằng 1012 nên trong 3 số nguyên tố đó thì phải có 1 số nguyên tố là số chẵn. Nên số chẵn đó là 2 đồng thời là số nhỏ nhất. Vậy số 2 là số nguyên tố nhỏ nhất trong 3 số nguyên tố đó

 

11 tháng 11 2020

a,Do p là số nguyên tố >3=>p2=3k+1 =>p2-1 chi hết cho 3

Tương tự, ta được q2-1 chia hết cho 3

Suy ra: p2-q2 chia hết cho 3(1)

Do p là số nguyên tố lớn hơn 3 nên p-1 và p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8<=>p2-1 chia hết cho 8

Do q là số nguyên tố lớn hơn 3 nên q-1 và q+1 là 2 số chẵn liên tiếp=>(q-1)(q+1) chia hết cho 8<=>q2-1 chia hết cho 8

Suy ra :p2-qchia hết cho 8(2)

Từ (1) và (2) suy ra p^2-q^2 chia hết cho BCNN(8;3)<=> p^2-q^2 chia hết cho 24

30 tháng 10 2017

3 tháng 1 2020

a) Nếu n = 3k+1 thì  n 2 = (3k+1)(3k+1) hay  n 2  = 3k(3k+1)+3k+1

Rõ ràng  n 2  chia cho 3 dư 1

Nếu n = 3k+2 thì  n 2 = (3k+2)(3k+2)  hay  n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên  n 2  chia cho 3 dư 1.

b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2  chia cho 3 dư 1 tức là   p 2 = 3 k + 1  do đó  p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3

Vậy p 2 + 2003  là hợp số

25 tháng 6 2023

a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2

+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k+ 2k) + 1 => n2 chia cho 3 dư 1

+) n chia cho 3 dư 2 => n = 3k + 2 => n= (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k+ 4k +1) + 1 => n2 chia cho 3 dư 1

Vậy...

b) p là số nguyên tố > 3 => p lẻ => plẻ => p + 2003 chẵn => p2 + 2003 là hợp số

14 tháng 12 2016

A = p2 - 1 = (p - 1)(p + 1)

p là số nguyên tố > 3 => p lẻ => p-1; p+1 chẵn => A chia hết cho 8 với mọi p là số nguyên tố > 3 (1)

p là số nguyên tố > 3 => p = 3k+1; 3k + 2

+) p= 3k+1 => A = 3k(3k+2) chia hết cho 3

+) p = 3k+2 => A = (3k+1)(3k+3) = 3(k+1)(3k+1) chia hết cho 3

=> A chia hết cho 3 với mọi p là số nguyên tố > 3 (2)

8 và 3 là 2 số nguyên tố cùng nhau (3)

Từ (1); (2); (3) => A chia hết cho 24 với mọi p là số nguyên tố lớn hơn 3 (đpcm)

 

p là số nguyên tố lớn hơn 3 nên p chia 3 dư 1 hoặc 2 và p là số lẻ

=>p-1 là số chẵn và p+1 cũng là số chẵn

=>(p-1)(p+1) chia hết cho 2*4=8(Vì p-1 và p+1 là hai số chẵn liên tiếp nên tích của chúng chia hết cho 8)

=>\(p^2-1⋮8\)(1)

TH1: p=3k+1

\(p^2-1=\left(p-1\right)\left(p+1\right)\)

\(=\left(3k+1-1\right)\left(3k+1+1\right)\)

\(=3k\cdot\left(3k+2\right)⋮3\)(2)

Từ (1),(2) suy ra \(p^2-1⋮BCNN\left(3;8\right)=24\)(4)

TH2: p=3k+2

\(p^2-1=\left(p-1\right)\left(p+1\right)\)

\(=\left(3k+2-1\right)\left(3k+2+1\right)\)

\(=3\left(k+1\right)\left(3k+1\right)⋮3\)(3)

Từ (1) và (3) suy ra \(p^2-1⋮BCNN\left(3;8\right)=24\)(5)

Từ (4) và (5) suy ra \(p^2-1⋮24\)