Cho tam giác ABC vuông góc tại A. Gọi d là đường thẳng đi qua C và vuông góc với BC. Tia phân giác của góc B cắt AC ở D và cắt d ở E. Kẻ CH vuông góc với DE (\(H\in DE\)). Chứng minh CH là tia phân giác của góc DCE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác CEH co:
H=90 độ=> C2+E=90 độ}
mà B2+E=90 độ }=> C2+E=B2+E=90 độ
=> C2=B2=90 đỘ(1)
XÉT tam giác CDH co:
H=90 ĐỘ=>D2+C1=90 độ
xét tam giác ABD CÓ:}
A=90 ĐỘ=>B1+D1=90 ĐỘ}
mà D2=D1(2 góc đối đỉnh)} => D2+C1=B1+D1=90 ĐỘ
=> C1=B1(2)
Từ (1) và(2)=> C1=B1; C2=B2 mà B1=B2=> C2=C1
VAY CH LA PHAN GIAC CU GOC DCE
để bạn sai ở chỗ là CH là p/g của góc DCE mới đúng
tick đúng 100% nhA
Vì BD là phân giác của ABC nên \(ABD=CBD=\frac{ABC}{2}\)
Vì ABC vuông góc tại A nên góc A = 90o.
Xét \(\Delta ABC\)có : ABC + ACB = 90o ( tính chất \(\Delta\)vuông )
\(\Rightarrow ABC=90^o-ACB\)
\(\Rightarrow\frac{ABC}{2}=\frac{90^0-ACB}{2}\)
\(\Rightarrow CBD=45^o-\frac{ACB}{2}\)
Vì \(CH \perp DE\)nên CDH = 90o.
Xét \(\Delta BHC\)có : HBC + BCH = 90o ( tính chất \(\Delta\)vuông )
\(\Rightarrow45^o-\frac{ACB}{2}+BCH=90^o\)
\(\Rightarrow BCH-\frac{ACB}{2}=45^o\)
\(\Rightarrow BCH-\frac{ACB}{2}=\frac{BCE}{2}\)( vì BCE = 90o )
\(\Rightarrow BCH-\frac{BCE+ACB}{2}=\frac{2.ACB+DCE}{2}=ACB+\frac{DCE}{2}\)
\(\Rightarrow BCH-ACB=\frac{DCE}{2}\)
\(\Rightarrow DCH=\frac{DCE}{2}\)
\(\Rightarrow\)CH là tia phân giác của góc DCE ( đpcm )
#Panda
a, Xét 2 tam giác vuông : ABM và DBM
BM chung
\(\widehat{ABM}=\widehat{DBM}\)( do BM là phân giác góc B )
\(\Rightarrow\Delta ABM=\Delta DBM\)( cạnh huyền - góc nhọn )
\(\Rightarrow BA=BD\)( 2 cạnh tương ứng )
b. Xét 2 tam giác vuông : ABC và DBE có :
BA = BD ( c/m ỏ câu a )
\(\widehat{B}\)chung
\(\Rightarrow\Delta ABC=\Delta DBE\)( cạnh góc vuông - góc nhọn )
c, Xét 2 tam giác vuông : AMK và DMH
AM = DM ( 2 cạnh tg ứng do ABM = DBM )
\(\widehat{AMK}=\widehat{DMH}\)( đối đỉnh )
\(\Rightarrow\Delta AMK=\Delta DMH\)( cạnh huyền - góc nhọn )
\(\Rightarrow MK=MH\)( 2 cạnh tg ứng )
Xét 2 tam giác vuông : MNK và MNH
MK = HM ( cmt )
MN chung
\(\Rightarrow\Delta MNK=\Delta MNH\)( cạnh huyền - góc vuông )
\(\Rightarrow\widehat{MNK}=\widehat{MNH}\)( 2 góc tg ứng )
=> NM là tia phân giác của \(\widehat{HMK}\)( đpcm ) (1)
d, Do AK = DH ( 2 cạnh tg ứng \(\Delta AMK=\Delta DMH\))
KN = HN ( 2 cạnh tg ứng \(\Delta MNK=\Delta MNH\))
\(\Rightarrow AN=AK+KN=DH+HN=DN\)
Xét 2 tam giác : ABN và DBN
AB = DB ( cmt )
BN chung
AN = BN ( cmt )
\(\Rightarrow\Delta ABN=\Delta DBN\left(c-c-c\right)\)
\(\Rightarrow\widehat{ANB}=\widehat{DNB}\)( 2 góc tg ứng )
=> NB là tia phân giác \(\widehat{AND}\)( 2 )
Từ (1)(2)
=> B , M , N thẳng hàng
Ta có hình vẽ:
Vì BD là phân giác của ABC nên \(ABD=CBD=\frac{ABC}{2}\)
Vì ABC vuông góc tại A nên góc A = 90o
Xét Δ ABC có: ABC + ACB = 90o (tính chất của Δ vuông)
=> ABC = 90o - ACB
=> \(\frac{ABC}{2}=\frac{90^o-ACB}{2}\)
=> CBD = 45o - \(\frac{ACB}{2}\)
Vì \(CH\perp DE\) nên CHD = 90o
Xét Δ BHC có: HBC + BCH = 90o (tính chất của Δ vuông)
=> 45o - \(\frac{ACB}{2}\) + BCH = 90o
=> BCH - \(\frac{ACB}{2}\) = 45o
=> BCH - \(\frac{ACB}{2}\) = \(\frac{BCE}{2}\) (vì BCE = 90o)
=> BCH \(=\frac{BCE+ACB}{2}=\frac{2.ACB+DCE}{2}=ACB+\frac{DCE}{2}\)
=> BCH - ACB = \(\frac{DCE}{2}\)
=> \(DCH=\frac{DCE}{2}\)
=> CH là tia phân giác của góc DCE (đpcm)
bn ơi, bn k trả lời sớm, thầy mik chữa bài và mik nộp bài mất tiêu r