K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2016

\(x^2-2x+y^2+4y+4z^2-4z+6=0\)

\(x^2-2x+1+y^2+4y+4+4z^2-4z+1=0\)

\(\left(x-1\right)^2+\left(y-2\right)^2+\left(2z-1\right)^2=0\)

\(x-1=y-2=2z-1=0\)

\(\left[\begin{array}{nghiempt}x=1\\y=2\\z=\frac{1}{2}\end{array}\right.\)

 

5 tháng 9 2021

\(x^2+2x+y^2-6y+4z^2-4z+11=0\)

\(\Leftrightarrow x^2+2x+1+y^2-6y+9+4z^2-4z+1=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-3\right)^2+\left(2z-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-3=0\\2z-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=3\\z=\dfrac{1}{2}\end{matrix}\right.\)

5 tháng 9 2021

\(x^2+2x+y^2-6y+4z^2-4z+11=0\\ \Rightarrow\left(x^2+2x+1\right)+\left(y^2-6y+9\right)+\left(4z^2-4z+1\right)=0\\ \Rightarrow\left(x+1\right)^2+\left(y-3\right)^2+\left(2z-1\right)^2=0\)

Vì \(\left(x+1\right)^2\ge0;\left(y-3\right)^2\ge0;\left(2z-1\right)^2\ge0\) mà \(\left(x+1\right)^2+\left(y-3\right)^2+\left(2z-1\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-3\right)^2=0\\\left(2z-1\right)^2=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=-1\\y=3\\z=\dfrac{1}{2}\end{matrix}\right.\)

28 tháng 8 2020

Bài làm:

Ta có: \(x^2+2x+y^2-6y+4z^2-4z+11=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-6y+9\right)+\left(4z^2-4z+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-3\right)^2+\left(2z-1\right)^2=0\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-3\right)^2=0\\\left(2z-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=3\\x=\frac{1}{2}\end{cases}}\)

28 tháng 8 2020

Xin lỗi mk nhầm đoạn cuối là: \(\Rightarrow\hept{\begin{cases}x=-1\\y=3\\z=\frac{1}{2}\end{cases}}\) nhé:)

4 tháng 7 2018

                    \(x^2+y^2+4z^2+2x+2y+4z+3=0\)

\(\Leftrightarrow\)\(\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(4z^2+4z+1\right)=0\)

\(\Leftrightarrow\)\(\left(x+1\right)^2+\left(y+1\right)^2+\left(2z+1\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\y+1=0\\2z+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-1\\y=-1\\z=-\frac{1}{2}\end{cases}}\)

Vậy....

4 tháng 7 2018

thank nha bạn

9 tháng 9 2017

x2+2x+y2-6y+4z^2-4z+11=0

\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-6y+9\right)+\left(4z^2-4z+1\right)=0\)

<=>(x+1)2+(y-3)2+(2z-1)2=0

Vì (x+1)2\(\ge\)0;(y-3)2\(\ge\)0;(2z-1)2\(\ge\)0 => (x+1)2+(y-3)2+(2z-1)2\(\ge\)0

Dấu "=" xảy ra khi (x+1)2=(y-3)2=(2z-1)2=0 <=> x+1=y-3=2z-1=0 <=> x=-1;y=3;z=1/2

14 tháng 10 2020

x2 + 2x + y2 - 6y + 4z2 - 4z + 11 = 0

<=> ( x2 + 2x + 1 ) + ( y2 - 6y + 9 ) + ( 4z2 - 4z + 1 ) = 0

<=> ( x + 1 )2 + ( y - 3 )2 + ( 2z - 1 )2 = 0 (*)

Ta có : \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(y-3\right)^2\ge0\forall y\\\left(2z-1\right)^2\ge0\forall z\end{cases}}\Rightarrow\left(x+1\right)^2+\left(y-3\right)^2+\left(2z-1\right)^2\ge0\forall x,y,z\)

Dấu "=" xảy ra tức (*) <=> \(\hept{\begin{cases}x+1=0\\y-3=0\\2z-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=3\\z=\frac{1}{2}\end{cases}}\)

Vậy ...

14 tháng 10 2020

6x bạn ơi

29 tháng 6 2016

\(\Leftrightarrow x^2+2x+1+y^2-6x+9+4z^2-4z+1=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-3\right)^2+\left(2z-1\right)^2=0\)(1)

VT(1) >= 0  với mọi x;y;z nên để đẳng thức (1) xảy ra thì: x = -1; y = 3; z = 1/2.

1 tháng 11 2016

x2-2x+y2+4y+4z2+6=0

=>(x-1)2        +(y+2)2+     4z2+1=0=>4z2+1=0=>z=+-1/2

  >hoặc=o    >hoặc=0     >hoặc=o