K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A = 2019 x 2021

A = 2019 x (2020 + 1)

A = 2019 x 2020 + 2019

B = 2020 x (2019 + 1)
B = 2020 x 2019 + 2020

=> B > A

5 tháng 8 2021

A= 2019 X ( 2020+ 1)

A= 2019x 2020+ 2019

B= 2020 X ( 2019+1)

B= 2020x 2019+ 2020

2019x 2020= 2020x 2019

mà 2019< 2020

nên A< B

a) Ta có: \(\sqrt{2021}-\sqrt{2020}\)

\(=\frac{\left(\sqrt{2021}-\sqrt{2020}\right)\left(\sqrt{2021}+\sqrt{2020}\right)}{\sqrt{2021}+\sqrt{2020}}\)

\(=\frac{1}{\sqrt{2020}+\sqrt{2021}}\)

Ta có: \(\sqrt{2020}-\sqrt{2019}\)

\(=\frac{\left(\sqrt{2020}-\sqrt{2019}\right)\left(\sqrt{2020}+\sqrt{2019}\right)}{\sqrt{2020}+\sqrt{2019}}\)

\(=\frac{1}{\sqrt{2019}+\sqrt{2020}}\)

Ta có: \(\sqrt{2020}+\sqrt{2021}>\sqrt{2019}+\sqrt{2020}\)

\(\Leftrightarrow\frac{1}{\sqrt{2020}+\sqrt{2021}}< \frac{1}{\sqrt{2019}+\sqrt{2020}}\)

hay \(\sqrt{2021}-\sqrt{2020}< \sqrt{2020}-\sqrt{2019}\)

b) Ta có: \(\sqrt{2019\cdot2021}\)

\(=\sqrt{\left(2020-1\right)\left(2020+1\right)}\)

\(=\sqrt{2020^2-1}\)

Ta có: \(2020=\sqrt{2020^2}\)

Ta có: \(2020^2-1< 2020^2\)

nên \(\sqrt{2020^2-1}< \sqrt{2020^2}\)

\(\Leftrightarrow\sqrt{2019\cdot2021}< 2020\)

c) Ta có: \(\left(\sqrt{2019}+\sqrt{2021}\right)^2\)

\(=2019+2021+2\cdot\sqrt{2019\cdot2021}\)

\(=4040+2\sqrt{2019\cdot2021}\)

\(=4040+2\cdot\sqrt{2020^2-1}\)

Ta có: \(\left(2\sqrt{2020}\right)^2\)

\(=4\cdot2020\)

\(=4040+2\cdot2020\)

\(=4040+2\cdot\sqrt{2020^2}\)

Ta có: \(2020^2-1< 2020^2\)

\(\Leftrightarrow\sqrt{2020^2-1}< \sqrt{2020^2}\)

\(\Leftrightarrow2\cdot\sqrt{2020^2-1}< 2\cdot\sqrt{2020^2}\)

\(\Leftrightarrow4040+2\cdot\sqrt{2020^2-1}< 4040+2\cdot\sqrt{2020^2}\)

\(\Leftrightarrow\left(\sqrt{2019}+\sqrt{2021}\right)^2< \left(2\sqrt{2020}\right)^2\)

\(\Leftrightarrow\sqrt{2019}+\sqrt{2021}< 2\sqrt{2020}\)

9 tháng 8 2019

bài 1:

ssh của A là:

(151-3):2+1=75

A=(151+3)x75:2=5775

đáp số: 5775

2 tháng 5 2023

A = \(\dfrac{5^{2020}+1}{5^{2021}+1}\) ⇒ A \(\times\) 10 = 2 \(\times\)\(\times\) \(\dfrac{5^{2020}+1}{5^{2021}+1}\) =2\(\times\) \(\dfrac{5^{2021}+5}{5^{2021}+1}\)

10A =2 \(\times\) \(\dfrac{5^{2021}+5}{5^{2021}+1}\) = 2 \(\times\)(1 + \(\dfrac{4}{5^{2021}+1}\) )= 2 + \(\dfrac{8}{5^{2021}+1}\) >2

B = \(\dfrac{10^{2019}+1}{10^{2020}+1}\) ⇒ B \(\times\) 10 = 10 \(\times\) \(\dfrac{10^{2019}+1}{10^{2020}+1}\)\(\dfrac{10^{2020}+10}{10^{2020}+1}\)

10B = \(\dfrac{10^{2020}+10}{10^{2020}+1}\) = 1 + \(\dfrac{9}{10^{2020}+1}\) < 2

10A > 2 > 10B ⇒ 10A>10B ⇒ A>B

 

 

 

 

11 tháng 3 2022

ta có : 

A = \(\dfrac{5^{2020}+1}{5^{2020}+1}\)

B = \(\dfrac{5^{2019}+1}{5^{2020}+1}\)

\(\Leftrightarrow\) B < A

22 tháng 4 2022

HẢO HÁN HÃO HÀN

23 tháng 9 2021

> VÌ NHÌN SỐ TO THÌ SẼ 

Tham khảo:

loading...

28 tháng 12 2020

Vì 2019 + 2020 < 2019 + 2021 nên A < B

Giải:

Ta có: N=2019+2020/2020+2021

=>N=2019/2020+2021 + 2020/2020+2021

Vì 2019/2020 > 2019/2020+2021 ; 2020/2021 > 2020/2020+2021

=>M>N

Vậy ...

Chúc bạn học tốt!

Ta có : \(\dfrac{2019}{2020}>\dfrac{2019}{2020+2021}\)

            \(\dfrac{2020}{2021}>\dfrac{2020}{2020+2021}\)

\(\Rightarrow\dfrac{2019}{2020}+\dfrac{2020}{2021}>\dfrac{2019+2020}{2020+2021}\)

\(\Rightarrow M>N\)

24 tháng 5 2020

Ta có: \(\frac{2019}{2020}>\frac{2019}{2020+2021};\frac{2020}{2021}>\frac{2020}{2020+2021}\)

=> \(\frac{2019}{2020}+\frac{2020}{2021}>\frac{2019}{2020+2021}+\frac{2020}{2020+2021}=\frac{2019+2020}{2020+2021}\)

=> A > B.