K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2016

a) Ta có: \(m=\left(4x+3\right)^2-2x\left(x+6\right)-5\left(x-2\right)\left(x+2\right)=16x^2+24x+9-2x^2-12x-5\left(x^2-4\right)\)

\(=14x^2+12x+9-5x^2+20=9x^2+12x+29\)

b) \(9x^2+12x+29=\left(9x^2+12x+16\right)+12=\left(3x+4\right)^2+12\ge12\)

Dấu "=" xảy ra khi 3x+4=0 => x=\(\frac{-4}{3}\) => đa thức trên luôn dương.

 

a: A(x)=3x^3+3x-1

B(x)=-2x^3+x^2+4x-3

b: A(x)+B(x)

=3x^3+3x-1-2x^3+x^2+4x-3

=x^3+x^2+7x-4

B(x)-A(x)

=-2x^3+x^2+4x-3-3x^3-3x+1

=-5x^3+x^2+x-2

c; M(x)=x^3+x^2+7x-4

M(-3)=-27+9-21-4=-31-21+9=-43

2 tháng 8 2023

a) \(A=-11x^5+4x-12x^2+11x^5+13x^2-7x+2\)

\(A=\left(-11x^5+11x^5\right)+\left(-12x^2+13x^2\right)+\left(4x-7x\right)+2\)

\(A=0+x^2+\left(-3x\right)+2\)

\(A=x^2-3x+2\)

Bậc của đa thức là: \(2\)

Hệ số cao nhất là: \(1\) 

b) Ta có: \(M\left(x\right)=A\left(x\right)\cdot B\left(x\right)\)

\(\Rightarrow M\left(x\right)=\left(x^2-3x+2\right)\cdot\left(x-1\right)\)

\(\Rightarrow M\left(x\right)=x^3-x^2-3x^2+3x+2x-2\)

\(\Rightarrow M\left(x\right)=x^3-4x^2+5x-2\)

c) A(x) có nghiệm khi:

\(A\left(x\right)=0\)

\(\Rightarrow x^2-3x+2=0\)

\(\Rightarrow x^2-x-2x+2=0\)

\(\Rightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

24 tháng 9 2020

a) Vận dụng hằng đẳng thức và nhân đơn thức với đơn thức nha bạn

( 4x+3)2 - 2x(x+6) - 5(x-2)(x+2)

= [ (4x)2+2*4x*3+32] - ( 2x2 + 12x) - 5(x2-22)

= (16x2+24x+9) - ( 2x2+12x) - 5( x2-4)

= 16x2+24x+9-2x2-12x-5x2+20

= 9x2+12x+29 (1)

b) Thay vào là ra nha

Thay x= -2 vào (1), ta được:

M= 9* (-2)2+12*(-2)+29

   = 9*4+12*(-2)+29

    = 36+(-24)+29

    = 31

Vậy M= 31 tại x= -2

c) Từ kết quả ở phần a, ta được: 

M= 9x2+12x+29

Ta có :

9x2 \(\ge\)0 với mọi x

12x \(\ge\)0 với mọi x 

29>0\(\Rightarrow\)Biểu thức M luôn dương. ( điều phải chứng minh ).

CHÚC BẠN HỌC TỐT NHA!!

14 tháng 6 2017

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

25 tháng 6 2019

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

31 tháng 7 2016

Bài 3: 

\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\) 

\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\) 

\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\) 

Thay x = 3 vào đa thức, ta có:

\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\) 

\(f\left(3\right)=240-28+27=239\)

Vậy đa thức trên bằng 239 tại x = 3

Thay x = -3 vào đa thức. ta có:

\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)

\(f\left(-3\right)=-240+28+27=-185\)

31 tháng 7 2016

Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)

\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)

\(f\left(x\right)=2x^6+x^2+3x^4\)

Thay x=1 vào đa thức, ta có:

\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)

Đa thức trên bằng 6 tại x =1

Thay x = - 1 vào đa thức, ta có:

\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)

Đa thức trên có nghiệm = 0

`a,`

`P(x)=5x^3+3-3x^2+x^4-2x-2+2x^2+x`

`P(x)=x^4+5x^3+(-3x^2+2x^2)+(-2x+x)+(3-2)`

`P(x)=x^4+5x^3-x^2-x+1`

`Q(x)=2x^4+x^2+2x+2-3x^2-5x+2x^3-x^4`

`Q(x)=(2x^4-x^4)+2x^3+(x^2-3x^2)+(2x-5x)+2`

`Q(x)=x^4+2x^3-2x^2-3x+2`

`b,`

`P(x)-Q(x)=(x^4+5x^3-x^2-x+1)-(x^4+2x^3-2x^2-3x+2)`

`P(x)-Q(x)= x^4+5x^3-x^2-x+1-x^4-2x^3+2x^2+3x-2`

`P(x)-Q(x)=(x^4-x^4)+(5x^3-2x^3)+(-x^2+2x^2)+(-x+3x)+(1-2)`

`P(x)-Q(x)=3x^3+x^2+2x-1`

10 tháng 5 2017

a)\(P\left(x\right)=4x^3-2x+2+x^2-4x^3+2x^3+5+x\)

\(P\left(x\right)=\left(4x^3-4x^3+2x^3\right)+\left(-2x+x\right)+\left(2+5\right)+x^2\)

\(P\left(x\right)=2x^3-x+7+x^2\)

*Sắp xếp: \(P\left(x\right)=2x^3+x^2-x+7\)

\(Q\left(x\right)=5x^3-x^2+3x-5x^3+3+4x^2+2x-2\)

\(Q\left(x\right)=\left(5x^3-5x^3\right)+\left(-x^2+4x^2\right)+\left(3x+2x\right)+\left(3-2\right)\)

\(Q\left(x\right)=2x^2+5x+1\)

*Sắp xếp:\(Q\left(x\right)=2x^2+5x+1\)

b) Ta có: \(M\left(x\right)=P\left(x\right)-Q\left(x\right)=2x^3+x^2-x+7-2x^2-5x-1\)

\(M\left(x\right)=P\left(x\right)-Q\left(x\right)=2x^3+\left(x^2-2x^2\right)+\left(-x-5x\right)+\left(7-1\right)\)

\(M\left(x\right)=P\left(x\right)-Q\left(x\right)=2x^3-x^2-6x+6\)

10 tháng 5 2017

xin lỗi nhé , lúc nãy mik bận nên ko giúp được

mik thấy có bạn Trịnh Công Mạnh Đồng trả lời rồi đó

Bạn ấy làm đúng rồi

^^

11 tháng 9 2020

Bài 1.

( 1 - 3x )( x + 2 )

= 1( x + 2 ) - 3x( x + 2 )

= x + 2 - 3x2 - 6x 

= -3x2 - 5x + 2

= -3( x2 + 5/3x + 25/36 ) + 49/12

= -3( x + 5/6 )2 + 49/12 ≤ 49/12 ∀ x

Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6

Vậy GTLN của biểu thức = 49/12 <=> x = -5/6

Bài 2.

A = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> A vô nghiệm ( > 0 mà :)) )

Bài 3.

M = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> đpcm

Bài 4.

A = -x2 + 18x - 81

= -( x2 - 18x + 81 )

= -( x - 9 )2 ≤ 0 ∀ x 

=> đpcm 

Bài 5. ( sửa thành luôn không dương nhé ;-; )

F = -x2 - 4x - 5

= -( x2 + 4x + 4 ) - 1

= -( x + 2 )2 - 1 ≤ -1 < 0 ∀ x

=> đpcm 

11 tháng 9 2020

Bài 2 

Ta có A = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0

Đa thức A vô nghiệm

Bại 3: Ta có M = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0 (đpcm)

Bài 4 Ta có A = -x2 + 18x - 81 = -(x2 - 18x + 81) = -(x - 9)2 \(\le0\)(đpcm)

Bài 5 Ta có F = -x2 - 4x - 5 = -(x2 + 4x + 5) = -(x2 + 4x + 4) - 1 = -(x + 2)2 - 1 \(\le\)-1 < 0 (đpcm)