Cho tam giác ABC cân tại A, AM là đường trung tuyến
a, Chứng minh rằng AM vuông góc BC
b, Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh rằng tam giác BMD bằng tam giác CMA. Từ đó suy ra BD = AC
c, tính số đo các cạnh tam giác MBD biết AM = 4 cm, BC = 6 cm
d, Trên tia đối của tia CB lấy tia lấy điểm E sao cho CB = CE. Chứng minh rằng C là trọng tâm của tam giác ABE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác CMA và tam giác BMD có :
\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)
=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)
=> ACBD là hình bình hành
=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm
b) Xét tam giác ABC và tam giác CDA có :
\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)
Chung AC
=> AD=BC
=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm
c) Xét tam giác ABC có :
M là trung điểm BC
A là trung điểm CE
Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm )
e) AM //BE => AD // BE
Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B
=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)
Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm
=> E,O , D thẳng hàng => đpcm
a) Do M là trung điểm của BC (gt)
⇒ MB = MC
Xét ∆AMB và ∆DMC có:
AM = DM (gt)
∠AMB = ∠DMC (đối đỉnh)
MB = MC (cmt)
⇒ ∆AMB = ∆DMC (c-g-c)
⇒ ∠MAB = ∠MDC (hai góc tương ứng)
Lại có:
∠MAC + ∠MAB = 90⁰ (∆ABC vuông tại A)
⇒ ∠MAC + ∠MDC = 90⁰
⇒ ∠DAC + ∠ADC = 90⁰
∆CDA có:
∠DAC + ∠CDA + ∠ACD = 180⁰ (tổng ba góc trong ∆ACD)
⇒ ∠ACD = 180⁰ - (∠DAC + ∠CDA)
= 180⁰ - 90⁰
= 90⁰
⇒ ∆ACD vuông tại C
Do ∆AMB = ∆DMC (cmt)
⇒ AB = CD (hai cạnh tương ứng)
Xét hai tam giác vuông: ∆ABC và ∆CDA có:
AC là cạnh chung
AB = CD (cmt)
⇒ ∆ABC = ∆CDA (hai cạnh góc vuông)
b) Do ∆ABC = ∆CDA (cmt)
⇒ BC = AD (hai cạnh tương ứng)
Do AM = DM (gt)
⇒ AM = DM = ½AD
Mà AD = BC (cmt)
⇒ AM = ½BC
a: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
DO đó: ABDC là hình bình hành
Suy ra: AB=DC; AC=BD
Xét ΔABC và ΔCDA có
AB=CD
BC=DA
AC chung
Do đó: ΔABC=ΔCDA
b: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=1/2BC
Mình ghi nhầm:
a) Chứng minh: tam giác MAB= tam giác MDC. Suy ra góc ACD vuông
b) Gọi K là trung điểm của AC. Chứng minh: KB=KD
c) KD cắt BC tại I. KB cắt AD tại N. Chứng minh : tam giác KNI cân
a) Xét ΔBMD và ΔCME có
BM=CM(M là trung điểm của BC)
\(\widehat{BMD}=\widehat{CME}\)(hai góc đối đỉnh)
MD=ME(gt)
Do đó: ΔBMD=ΔCME(c-g-c)
b) Ta có: ΔBMD=ΔCME(cmt)
nên BD=CE(hai cạnh tương ứng)
c) Ta có: ΔBMD=ΔCME(cmt)
nên \(\widehat{BDM}=\widehat{CEM}\)(hai góc tương ứng)
mà \(\widehat{BDM}\) và \(\widehat{CEM}\) là hai góc ở vị trí so le trong
nên BD//EC(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: BD//EC(cmt)
BD\(\perp\)AB(gt)
Do đó: EC\(\perp\)AB(Định lí 2 từ vuông góc tới song song)
Bài 1:
a/Xét \(\Delta KMD\)và \(\Delta CMA\)có:MD=MA(gt);KM=MC(do M là trung điểm KC);^KMD=^CMA(đối đỉnh)
Do đó:\(\Delta KMD=\Delta CMA\left(c.g.c\right)\)
b/\(\Delta KMD=\Delta CMA\left(c.g.c\right)\Rightarrow\widehat{MKD}=\widehat{MCA}\Rightarrow KD//CA\Rightarrow\widehat{CKD}=\widehat{ACB}=30^0\Rightarrow\widehat{AKD}=90^0+30^0=120^0\)c/Ta có KN//AC(do cùng vuông góc với AB),mà KD//CA nên K;N;D thẳng hàng