Tìm x:
a)\(\frac{x+7}{x+4}=\frac{2}{5}\)
b)\(\frac{2\text{x}-3}{2}=\frac{50}{2\text{x}-3}\)
c)\(\frac{x+1}{x-3}=\frac{x+3}{x+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) pt <=> \(x-\frac{21}{5}=\frac{23}{7}< =>x=\frac{23}{7}+\frac{21}{5}=\frac{262}{35}\)
vậy x = \(\frac{262}{35}\)
d) \(x-\frac{3}{4}=\frac{51}{8}< =>x=\frac{51}{8}+\frac{3}{4}=\frac{57}{8}\)
vậy x = \(\frac{57}{8}\)
e) pt <=> \(\frac{7}{8}:x=\frac{7}{2}< =>\frac{7}{8}.\frac{1}{x}=\frac{7}{2}< =>\frac{7}{8x}=\frac{7}{2}< =>56x=14< =>x=\frac{14}{56}=\frac{1}{4}\)
vậy x = \(\frac{1}{4}\)
a) pt <=> \(x+\frac{11}{4}=\frac{17}{3}< =>x=\frac{17}{3}-\frac{11}{4}=\frac{35}{12}\)
vậy x = \(\frac{35}{12}\)
b) pt <=> \(\frac{x.7}{2}=\frac{19}{4}< =>x=\frac{19.2}{4.7}=\frac{38}{28}=\frac{19}{14}\)
vậy x = \(\frac{19}{14}\)
mk sắp phải đi học rồi các bạn giúp mình với có đc ko mk nhớ sẽ đền đáp công ơn của bạn
b, \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng dãy tỉ số bằng nhau :
\(\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x = 2 . 10 = 20
y = 2 . 15 = 30
z = 2 . 21 = 42
Vậy : .....
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
MSC của y là : 20
Có: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(2x+3y-z=186\)
\(\Rightarrow2.15+3.20-28=30+60-28=62\)
\(\frac{186}{62}=3\)
x = 3 . 15 = 45
y = 3 . 20 = 60
z = 3 . 28 = 84
Vậy: .....
a) \(\frac{5-x}{4x^2-8x}\) + \(\frac{7}{8x}\) = \(\frac{x-1}{2x\left(x-2\right)}\) +\(\frac{1}{8x-16}\) ĐKXĐ : x #0, x#2, x#-2
<=> \(\frac{5-x}{4x\left(x-2\right)}\) + \(\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}\) + \(\frac{1}{8\left(x-2\right)}\)
<=> \(\frac{2\left(5-x\right)}{8x\left(x-2\right)}+\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{4\left(x-1\right)}{8x\left(x-2\right)}+\frac{x}{8x\left(x-2\right)}\)
=> 10 - 2x + 7x - 14 = 4x - 4 + x
<=>-2x + 7x - 4x + x = -4 - 10 + 14
<=>x=-14
a, x( x - 3) - ( x + 2)( x - 1) = 3
<=> x2 - 3x - x2 + x - 2x + 2 = 3
<=> x2 - 3x - x2 + x - 2x = 3 - 2
<=> -4x = 1
<=> x =\(-\frac{1}{4}\)
Vậy_
b, \(x-\frac{x-1}{5}+\frac{x+2}{6}=4+\frac{x+1}{3}\)
\(\Leftrightarrow\frac{30x}{30}-\frac{\left(x-1\right)6}{30}+\frac{\left(x+2\right)5}{30}=\frac{120}{30}+\frac{\left(x+1\right)10}{30}\)
=> 30x - 6x + 6 + 5x + 10 = 120 + 10x + 10
<=> 30x - 6x + 5x - 10x = 120 + 10 - 6 - 10
<=> 19x = 114
<=> x = 6
Vậy _
a) \(\frac{x+7}{x+4}=\frac{2}{5}\)
\(\Rightarrow5\left(x+7\right)=2\left(x+4\right)\)
\(\Rightarrow5x+35-2x-8=0\)
\(\Rightarrow3x=-27\)
\(\Rightarrow x=-9\)
b) \(\frac{2x-3}{2}=\frac{50}{2x-3}\)
\(\Rightarrow\left(2x-3\right)^2=100\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-3=10\\2x-3=-10\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{13}{2}\\x=-\frac{7}{2}\end{array}\right.\)
c) \(\frac{x+1}{x-3}=\frac{x+3}{x+2}\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)=\left(x-3\right)\left(x+3\right)\)
\(\Leftrightarrow x^2+3x+2=x^2-9\)
\(\Leftrightarrow3x=-11\)
\(\Leftrightarrow x=-\frac{11}{3}\)