Cho tứ giác ABCD. Gọi M,N thứ tự là trung điểm cùa AB và CD, I là trung điểm của MN, G là trọng tâm tam giác ABC.
CMR: A,I,G thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ gọi OO là giao điểm của CMCM và ANAN
dễ dàng c/m ΔANB=ΔMCBΔANB=ΔMCB (c.g.c)
⟹BNAˆ=MCBˆ⟹BNA^=MCB^ ; MC=ANMC=AN
ta có: MC=ANMC=AN mà QQ là trung điểm MCMC và SS là trung điểm ANAN nên: SN=QCSN=QC
ta có:
BNAˆ+ANCˆ=BCMˆ+MCNˆ=600BNA^+ANC^=BCM^+MCN^=600
⟹ANCˆ=MCNˆ→ΔONC⟹ANC^=MCN^→ΔONC cân tại OO hay ON=OCON=OC
dễ dàng c/m AM//CNAM//CN suy ra: OMOC=OAONOMOC=OAON
mà OM=OAOM=OA, OC=ONOC=ON và SN=QCSN=QC nên:
OMOC−QN=OAON−SN→OMOG=OAOSOMOC−QN=OAON−SN→OMOG=OAOS
⟹AM//SQ⟹AM//SQ mà AM//CNAM//CN nên SQ//NCSQ//NC
⟹SQMˆ=NCMˆ⟹SQM^=NCM^
dễ dàng c/m ΔNABΔNAB có RSRS là đường trung bình nên RS//ABRS//AB
dễ dàng c/m ΔMBCΔMBC có PQPQ là đường trung bình nên PQ//BCPQ//BC
suy ra: RS//PQRS//PQ hay PQRSPQRS là hình thang
vì PQ//BCPQ//BC nên RPQˆ=600RPQ^=600 và MQPˆ=MCBˆMQP^=MCB^
ta có:SQMˆ+MQPˆ=NCMˆ+MCBˆ=600SQM^+MQP^=NCM^+MCB^=600
⟹SQPˆ=600⟹SQP^=600
hình thang PQRSPQRS có RPQˆ=SQPˆ=600RPQ^=SQP^=600 nên PQRSPQRS là hình thang cân
b/ sai đề hình như đề đúng là PQ=BC2PQ=BC2:
ta có:
ΔMBCΔMBC có PQPQ là đường trung bình nên:
PQ=BC2PQ=BC2
P/s: câu a làm dài mà câu b ngắn khiếp=))
Nối DG cắt EF tại I'
Từ E dưng đường thẳng //AF cắt DG tại K (1)
Xét tg ADG có
EK//AG; EA=ED => EK là đường trung bình của tg ADG\(\Rightarrow EK=\frac{AG}{2}\) (2)
Ta có \(GF=\frac{AG}{2}\) (Do G là trọng tâm của tg ABC) (3)
Từ (1) (2) (3) => EK//=GF => GFKE là hình bình hành (Tứ giác có cặp cạnh đối // và = nhau thì tứ giác đó là hbh)
=> I'F=I'E (trong hbh các đường chéo cắt nhau tại trung điểm mỗi đường)
Mà I cũng là trung điểm của EF
=> I trung I' => D; I; G thảng hàng