tìm giá trị lớn nhất
A= 5 - 8x - x2
B = 5 - x2 + 2x - 4y2 -4y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=-\left(x^2+8x+16-16\right)+5=-\left(x+4\right)^2+21\le21\forall x\)
Dấu ''='' xảy ra khi x = - 4
Vậy GTLN của A là 21 tại x = -4
b, \(B=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\)
\(=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\forall x;y\)
Dấu ''='' xảy ra khi x = 1 ; y = -1/2
Vậy GTLN của B là 7 tại x = 1 ; y = -1/2
Lời giải:
a)
$A=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$Vì $(x+4)^2\geq 0$ nên $A=21-(x+4)^2\leq 21$
Vậy GTLN của $A$ là $21$. Giá trị này đạt tại $x+4=0\Leftrightarrow x=-4$
b)
$B=5-x^2+2x-4y^2-4y=5-(x^2-2x)-(4y^2+4y)$
$=7-(x^2-2x+1)-(4y^2+4y+1)$
$=7-(x-1)^2-(2y+1)^2$
Vì $(x-1)^2\geq 0; (2y+1)^2\geq 0$ với mọi $x,y$ nên $B=7-(x-1)^2-(2y+1)^2\leq 7$Vậy GTLN của $B$ là $7$ tại $x=1; y=\frac{-1}{2}$
Bài 1:
a: \(A=x^2+2x+4\)
\(=x^2+2x+1+3\)
\(=\left(x+1\right)^2+3>=3\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
Vậy: \(A_{min}=3\) khi x=-1
b: \(B=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1>=1\forall x\)
Dấu '=' xảy ra khi x-10=0
=>x=10
Vậy: \(B_{min}=1\) khi x=10
c: \(C=x^2-2x+y^2+4y+8\)
\(=x^2-2x+1+y^2+4y+4+3\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\forall x\)
Dấu '=' xảy ra khi x-1=0 và y+2=0
=>x=1 và y=-2
Vậy: \(C_{min}=3\) khi (x,y)=(1;-2)
Bài 2:
a: \(A=5-8x-x^2\)
\(=-\left(x^2+8x\right)+5\)
\(=-\left(x^2+8x+16-16\right)+5\)
\(=-\left(x+4\right)^2+16+5=-\left(x+4\right)^2+21< =21\forall x\)
Dấu '=' xảy ra khi x+4=0
=>x=-4
b: \(B=x-x^2\)
\(=-\left(x^2-x\right)\)
\(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)
=>\(x=\dfrac{1}{2}\)
c: \(C=4x-x^2+3\)
\(=-x^2+4x-4+7\)
\(=-\left(x^2-4x+4\right)+7\)
\(=-\left(x-2\right)^2+7< =7\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
d: \(D=-x^2+6x-11\)
\(=-\left(x^2-6x+11\right)\)
\(=-\left(x^2-6x+9+2\right)\)
\(=-\left(x-3\right)^2-2< =-2\forall x\)
Dấu '=' xảy ra khi x-3=0
=>x=3
a) Từ M = x − 3 2 2 + 31 4 ≥ 31 4 ⇒ M min = 31 4 ⇔ x = 3 2 .
b) Ta có N = ( x + 2 y ) 2 + ( y – 2 ) 2 + ( x + 4 ) 2 – 120 ≥ - 120 .
Tìm được N min = -120 Û x = -4 và y = 2.
\(A=15-8x-x^2=-\left(x+4\right)^2+31\)
Vì \(\left(x+4\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+4\right)^2+31\le31\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x+4\right)^2=0\Leftrightarrow x=-4\)
Vậy maxA = 31 <=> x = - 4
\(B=4x-x^2+2=-\left(x-2\right)^2+6\)
Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow-\left(x-2\right)^2+6\le6\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy maxB = 6 <=> x = 2
a) \(A=15-8x-x^2=-\left(x^2+8x+16\right)-1\)
\(=-\left(x+4\right)^2-1\le-1\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-\left(x+4\right)=0\Rightarrow x=-4\)
b) \(B=4x-x^2+2=-\left(x^2-4x+4\right)+6\)
\(=-\left(x-2\right)^2+6\le6\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-\left(x-2\right)^2=0\Rightarrow x=2\)
c) Trang nghĩ nên sửa đề nhé:
\(C=-x^2-y^2+4x+4y+2\)
\(C=-\left(x^2-4x+4\right)-\left(y^2-4y+4\right)+10\)
\(C=-\left(x-2\right)^2-\left(y-2\right)^2+10\le10\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\left(x-2\right)^2=0\\-\left(y-2\right)^2=0\end{cases}}\Rightarrow x=y=2\)
A=-(x2+8x+16)+21<=21 (tự làm tiếp)
B=-(x2-2x+1)-(4y2+4y+1)+7
=-(x-1)2-(2y+1)2+7<=7
\(A=5-8x-x^2\)
\(A=-x^2-8x+5\)
\(-A=x^2+8x-5\)
\(-A=x^2+4x+4x+16-21\)
\(-A=x.\left(x+4\right)+4.\left(x+4\right)-21\)
\(-A=\left(x+4\right).\left(x+4\right)-21\)
\(A=-\left(x+4\right)^2-21\le-21\)
Dấu = xảy ra khi A = -21 \(\Leftrightarrow-\left(x+4\right)^2-21=-21\)
\(\Leftrightarrow-\left(x+4\right)^2=0\Rightarrow x+4=0\Rightarrow x=-4\)