Tính
\(\left(\frac{-10}{5}\right)^5.\left(\frac{-6}{5}\right)^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=-32.\(\frac{1296}{625}\)
=\(\frac{-41472}{625}\)=\(-66\frac{222}{625}\)
con số khổng lồ thật
a)
\(\begin{array}{l}\left( {\frac{3}{4}:1\frac{1}{2}} \right) - \left( {\frac{5}{6}:\frac{1}{3}} \right)\\ = \left( {\frac{3}{4}:\frac{3}{2}} \right) - \left( {\frac{5}{6}.3} \right)\\ = \left( {\frac{3}{4}.\frac{2}{3}} \right) - \frac{5}{2}\\ = \frac{1}{2} - \frac{5}{2}\\ = \frac{-4}{2}\\= - 2.\end{array}\)
b)
\(\begin{array}{l}\left[ {\left( {\frac{{ - 1}}{5}} \right):\frac{1}{{10}}} \right] - \frac{5}{7}.\left( {\frac{2}{3} - \frac{1}{5}} \right)\\ = \left( {\frac{{ - 1}}{5}} \right).10 - \frac{5}{7}.\left( {\frac{{10}}{{15}} - \frac{3}{{15}}} \right)\\ = - 2 - \frac{5}{7}.\frac{7}{{15}}\\ = - 2 - \frac{1}{3}\\ = \frac{{ - 6}}{3} - \frac{1}{3}\\ = \frac{{ - 7}}{3}\end{array}\)
c)
\(\begin{array}{l}\left( { - 0,4} \right) + 2\frac{2}{5}.{\left[ {\left( {\frac{{ - 2}}{3}} \right) + \frac{1}{2}} \right]^2}\\ = \left( { - \frac{2}{5}} \right) + \frac{{12}}{5}.{\left[ {\left( {\frac{{ - 4}}{6}} \right) + \frac{3}{6}} \right]^2}\\ = \left( { - \frac{2}{5}} \right) + \frac{{12}}{5}.{\left( {\frac{{ - 1}}{6}} \right)^2}\\ = \left( { - \frac{2}{5}} \right) + \frac{{12}}{5}.\frac{1}{{36}}\\ = \left( { - \frac{2}{5}} \right) + \frac{1}{{15}}\\ = \left( { - \frac{6}{{15}}} \right) + \frac{1}{{15}}\\ = \frac{{ - 5}}{{15}}\\ = \frac{{ - 1}}{3}\end{array}\)
d)
\(\begin{array}{l}\left\{ {\left[ {{{\left( {\frac{1}{{25}} - 0,6} \right)}^2}:\frac{{49}}{{125}}} \right].\frac{5}{6}} \right\} - \left[ {\left( {\frac{{ - 1}}{3}} \right) + \frac{1}{2}} \right]\\ = \left\{ {\left[ {{{\left( {\frac{1}{{25}} - \frac{3}{5}} \right)}^2}.\frac{{125}}{{49}}} \right].\frac{5}{6}} \right\} - \left[ {\left( {\frac{{ - 2}}{6}} \right) + \frac{3}{6}} \right]\\ = \left\{ {\left[ {{{\left( {\frac{{ 1}}{{25}}-\frac{15}{25}} \right)}^2}.\frac{{125}}{{49}}} \right].\frac{5}{6}} \right\} - \frac{1}{6}\\ = \left\{ {\left[ {{{\left( {\frac{{ - 14}}{{25}}} \right)}^2}.\frac{{125}}{{49}}} \right].\frac{5}{6}} \right\} - \frac{1}{6}\\ = \left\{ {\frac{{196}}{{{{25}^2}}}.\frac{{25.5}}{{49}}.\frac{5}{6}} \right\} - \frac{1}{6}\\ = \left( {\frac{{4.49.25.5.5}}{{{{25}^2}.49.6}}} \right) - \frac{1}{6}\\ = \frac{4}{6} - \frac{1}{6}\\ = \frac{3}{6}\\ = \frac{1}{2}\end{array}\)
1.
\(\frac{3}{10}-\left[\left(-\frac{5}{6}\right)-\left(-\frac{2}{3}\right)\right]\)
\(=\frac{3}{10}-\left(-\frac{13}{30}\right)=\frac{11}{15}\)
2.
\(\frac{9}{10}+\left(-\frac{7}{8}\right)-\left(-\frac{2}{5}\right)-\frac{4}{3}\)
\(=\frac{9}{10}-\frac{7}{8}+\frac{2}{5}-\frac{4}{3}=-\frac{109}{120}\)
A) \(\frac{10}{12}\)+\(2\)- /\(\frac{-2}{3}\)/ -\(\frac{3}{4}\)= \(\frac{10}{12}\)+2-\(\frac{2}{3}\)-\(\frac{3}{4}\)= \(\frac{10}{12}\)+\(\frac{24}{12}\)-\(\frac{8}{12}\)-\(\frac{9}{12}\)=\(\frac{17}{12}\)
tương tự bài B= \(\frac{59}{40}\)
mk hk bk ghi dáu GTTĐ nên mk ghi như thế
bạn tính kết quả trong dấu GT tuyệt đối rồi bạn mở dấu GTTĐ bằng cách cho số đó trở thành số dương là được
chúc bn may mắn
(\(\frac{-10}{5}^5\)) .(\(\frac{-6^4}{5}\))= \(\frac{-10^4}{5}\) . \(\frac{-6^4}{5}\) . \(\frac{-10}{5}\) =( \(\frac{-10^4}{5}\).\(\frac{-6^4}{5}\)).\(\frac{-10}{5}\)= \(\frac{60^4}{5}\).-2=\(\frac{60^4.-2}{5}\)
\(\left(\frac{-10}{5}\right)^5.\left(\frac{-6}{5}\right)^4=\left(\frac{-10}{5}\right)^4.\left(\frac{-6}{5}\right)^4.\left(\frac{-10}{5}\right)=\left[\left(\frac{-10}{5}\right).\left(\frac{-6}{5}\right)\right]^4.\left(-2\right)=\left(\frac{60}{5}\right)^4.\left(-2\right)=12^4.\left(-2\right)\)