tìm 3 số nguyên liên tiếp biết tổng các bình phương số đầu bằng bình phương số cuối
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 số đó là a - 1 ; a ; 1 + a
Ta có :
\(a^2+\left(a-1\right)^2=\left(a+1\right)^2\)
\(a^2+a^2+1-2a=a^2+1+2a\)
\(a^2-2a=2a\)
\(a^2=4a\)
\(a^2-4a=0\)
\(a\left(a-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a=0\\a=4\end{cases}}\)
Vậy...
Gọi 3 số tự nhiên liên tiếp lần lượt là a,a+1,a+2 (a \(\in\) N)
Có: a2+(a+1)2=(a+2)2
=>a2+a2+2a+1=a2+4a+4
=>a2+2a+1=4a+4
=>a2+1=2a+4
=>a2+1-2a-4=0
=>a2-2a-3=0
=>a2-3a+a-3=0
=>a(a-3)+(a-3)=0
=>(a+1)(a-3)=0
=>a=-1 hoặc a=3
Mà a \(\in\) N
=>a=3
Vậy STN nhỏ nhất là 3
Gọi 3 số đó là a ; a + 1 và a + 2
Có :
\(a^2+\left(a+1\right)^2=\left(a+2\right)^2\)
\(2a^2+2a+1=a^2+4+4a\)
\(\Rightarrow a^2=3+2a\)
\(a^2-2a-3=0\)
\(\left(a^2-3a\right)+\left(a-3\right)=0\)
\(\left(a-3\right)\left(a+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a=3\\a=-1\end{cases}}\)
Mà a là số tự nhiên nên a = 3
Vậy ...
Gọi 7 số nguyên liên tiếp là: n; n+1; n+2; n+3; n+4; n+5; n+6. Theo đề bài
\(n^2+\left(n+1\right)^2+\left(n+2\right)^2+\left(n+3\right)^2=\left(n+4\right)^2+\left(n+5\right)^2+\left(n+6\right)^2.\)
Khai triển, rút gọn rồi giải phương trình bậc 2 để tìm n phù hợp
Đáp án C
Gọi d = 2 x là công sai
ta có bốn số là a - 3 x , a - x , a + x , a + 3 x
Khi đó, từ giả thiết ta có:
⇔ 1 , 3 , 5 , 7 7 , 5 , 3 , 1
Tổng bình phương của số hạng đầu và cuối là 1 2 + 7 2 = 50
Đáp án C.
Tổng bình phương của số hạng đầu và cuối là 1 2 + 7 2 = 50
Gọi 3 số nguyên liên tiếp là a-1, a, a+1 (a ∈ Z)
Theo đề ta có \(\left(a-1\right)^2+a^2=\left(a+1\right)^2\)
\(\Leftrightarrow a^2-2a+1+a^2=a^2+2a+1\)
\(\Leftrightarrow a^2-4a=0\)
\(\Leftrightarrow a\left(a-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\\a=4\end{matrix}\right.\)
Vậy có 2 cặp 3 số nguyên liên tiếp đó là \(\left(-1;0;1\right)\) và \(\left(3;4;5\right)\)
Tick nha bạn 😘