K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2016

vế phải, vế trái

18 tháng 9 2016

\(VP=x^2+x-6=x^2+2x-3x-6=x\left(x+2\right)-3\left(x+2\right)=\left(x-3\right)\left(x+2\right)=VT\left(\text{đ}pcm\right)\)

3 tháng 10 2023

Bài 4.

\(A=2x^3+(x+1)^3-3x(x-2)(x+2)-3(x^2+5x+9)\\=2x^3+(x^3+3x^2+3x+1)-3x(x^2-4)-3x^2-15x-27\\=2x^3+x^3+3x^2+3x+1-3x^3+12x-3x^2-15x-27\\=(2x^3+x^3-3x^3)+(3x^2-3x^2)+(3x+12x-15x)+(1-27)\\=-26\\---\)

\(B=x(x-4x)+x(2-x)(x+2)+4(2x^2-5x+4)\\=x\cdot(-3x)+x(2-x)(2+x)+8x^2-20x+16\\=-3x^2+x(4-x^2)+8x^2-20x+16\\=-3x^2+4x-x^3+8x^2-20x+16\)

Bạn kiểm tra lại đề giúp mình!

\(C=(x-2y)(x^2+2xy+4y^2)-(x^3-8y^3+10)\) (sửa đề)

\(=x^3-(2y)^3-x^3+8y^2-10\\=x^3-8y^3-x^3+8y^3-10\\=(x^3-x^3)+(-8y^3+8y^3)-10\\=-10\)

Bài 5.

\(d)xy^2-3x^3y^2-2x(xy-3xy^2)\\=xy^2-3x^3y^2-2x^2y+6x^2y^2\\---\\f)(x-y)(2x+y)-2x^2+y^2+3xy\\=x(2x+y)-y(2x+y)-2x^2+y^2+3xy\\=2x^2+xy-2xy-y^2-2x^2+y^2+3xy\\=(2x^2-2x^2)+(xy-2xy+3xy)+(-y^2+y^2)\\=2xy\)

\(Toru\)

3 tháng 10 2023

cảm ơn bạn nhiều nhé. Câu C mình gõ phím vội nên quên mất ;để mik sửa

C=(x-2y)(x2+2xy+4x2)-(x3-8y3+10)

AH
Akai Haruma
Giáo viên
22 tháng 7 2021

Lời giải:
a.

$A=(x+6)^2-(x+2)^2+2[(x-5)^2-(x-3)^2]$

$=(x+6-x-2)(x+6+x+2)+2[(x-5-x+3)(x-5+x-3)]$

$=4(2x+8)+2(-2)(2x-8)$

$=4(2x+8)-4(2x-8)=4[(2x+8)-(2x-8)]=4.16=64$ không phụ thuộc vào $x$

b.

$B=(x^3-2^3)-(x^3+2^3)=-16$ không phụ thuộc vào $x$

c.

$C=x^4+2x^2-[(x^2+3)^2-(2x)^2]$

$=x^4+2x^2-(x^4+6x^2-4x^2)$

$=x^4+2x^2-(x^4+2x^2)=0$ không phụ thuộc vào $x$

 

a) Ta có: \(A=\left(x+6\right)^2+2\left(x-5\right)^2-\left(x+2\right)^2-2\left(x-3\right)^2\)

\(=x^2+12x+36+2\left(x^2-10x+25\right)-\left(x^2+4x+4\right)-2\left(x^2-6x+9\right)\)

\(=x^2+12x+36+2x^2-20x+50-x^2-4x-4-2x^2+12x-18\)

\(=34\)

b) Ta có: \(B=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+2\right)\left(x^2-2x+4\right)\)

\(=x^3-8-x^3-8\)

=-16

c) Ta có: \(C=x^4+2x^2-\left(x^2-2x+3\right)\left(x^2+2x+3\right)\)

\(=x^4+2x^2-\left[\left(x^2+3\right)^2-4x^2\right]\)

\(=x^4+2x^2-\left(x^4+6x^2+9\right)+4x^2\)

\(=-9\)

a) Ta có: \(\dfrac{x^2+2x+1}{x^2+x}\)

\(=\dfrac{\left(x+1\right)^2}{x\left(x+1\right)}\)

\(=\dfrac{x+1}{x}\)

b) Ta có: \(\dfrac{x^2-4x+3}{x^2-x}\)

\(=\dfrac{\left(x-1\right)\left(x-3\right)}{x\left(x-1\right)}\)

\(=\dfrac{x-3}{x}\)

11 tháng 7 2018

Rút gọn B = 35.

31 tháng 7 2018

Thực hiện khai triển hằng đẳng thức

A = ( x 3  – 1) + ( x 3  – 6 x 2  + 12x – 8) – 2( x 3  + 1) + 6( x 2  – 2x + 1).

Rút gọn A = -5 không phụ thuộc biến x.

23 tháng 1 2017

Biểu thức  x x - 3 - x 2 + 3 x 2 x + 3 . x + 3 x 2 - 3 x - x x 2 - 9 xác định khi x – 3  ≠  0,2x + 3  ≠  0, x 2 - 3 x   ≠  0 và x 2 - 9   ≠  0

Suy ra: x  ≠  3; x  ≠  - 3/2 ; x  ≠  0; x  ≠  3 và x  ≠   ± 3

Với điều kiện x  ≠  3; x  ≠  - 3/2 ; x  ≠  0; x  ≠  - 3, ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy giá trị của biểu thức  x x - 3 - x 2 + 3 x 2 x + 3 . x + 3 x 2 - 3 x - x x 2 - 9 bằng 1 khi x  ≠  3; x  ≠  - 3/2 ; x  ≠  0; x  ≠  - 3

10 tháng 9 2023

a) \(x^2+xy+y^2+1\)

\(=x^2+xy+\dfrac{y^2}{4}-\dfrac{y^2}{4}+y^2+1\)

\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)

mà \(\left\{{}\begin{matrix}\left(x+\dfrac{y}{2}\right)^2\ge0,\forall x;y\\\dfrac{3y^2}{4}\ge0,\forall x;y\end{matrix}\right.\)

\(\Rightarrow\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0,\forall x;y\)

\(\Rightarrow dpcm\)

10 tháng 9 2023

b) \(...=x^2-2x+1+4\left(y^2+2y+1\right)+z^2-6z+9+1\)

\(=\left(x-1\right)^2+4\left(y^{ }+1\right)^2+\left(z-3\right)^2+1>0,\forall x.y\)

\(\Rightarrow dpcm\)