K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

Ta có: \(x^2+4x+4\)

\(x^2\ge0,\forall x\)

\(4x\ge0,\forall x\)

\(\Rightarrow x^2+4x+4\ge1>0,\forall x\)

Vậy....

P/s: Không chắc nhé!

11 tháng 1 2021

Có: \(4x^2-3xy-y^2-p\left(3x+2y\right)=2p^2\Leftrightarrow\left(4x+y\right)\left(x-y\right)-p\left(3x+2y\right)=2p^2\)\(\Leftrightarrow\left[\left(3x+2y\right)+\left(x-y\right)\right]\left(x-y\right)-p\left(3x+2y\right)=2p^2\)\(\Leftrightarrow\left(3x+2y\right)\left(x-y\right)-p\left(3x+2y\right)+\left(x-y\right)^2-p^2=p^2\)\(\Leftrightarrow\left(3x+2y\right)\left(x-y-p\right)+\left(x-y-p\right)\left(x-y+p\right)=p^2\)\(\Leftrightarrow\left(x-y-p\right)\left(4x+y+p\right)=p^2=1.p^2\)

Do \(4x+y+p>x-y-p\)nên \(\hept{\begin{cases}x-y-p=1\left(1\right)\\4x+y+p=p^2\left(2\right)\end{cases}}\)(Do p là số nguyên tố)

Lấy (1) + (2), ta được: \(5x=p^2+1\Rightarrow5x-1=p^2\)(là số chính phương, đpcm)

20 tháng 11 2015

1)

gọi ba số tự nhiên liên tiếp là a;a+1;a+2

ta có :

a+(a+1)+(a+2)=3.a+3=3.(a+1) chia hết cho 3

=>dpcm

2) gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2a;a+3;a+4

ta có :a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5a+2.5=5(a+2) chia hết cho 5

=>dpcm

20 tháng 11 2015

Câu hỏi tương tự.

 

29 tháng 10 2016

\(B=x^4-2x^3+2x^2-4x+5\)

\(=\left(x^4-2x^3+x^2\right)+\left(x^2-4x+4\right)+1\)

\(=\left(x^2-x\right)^2+\left(x-2\right)^2+1\)

Vì: \(\begin{cases}\left(x^2-x\right)^2\ge0\\\left(x-2\right)^2\ge0\end{cases}\)\(\Rightarrow\left(x^2-x\right)^2+\left(x-2\right)^2\ge0\)

\(\Rightarrow\left(x^2-x\right)^2+\left(x-2\right)^2+1>0\)

Kết luận...............................................

31 tháng 10 2016

Thanks ban nhieu lam ban gioi that

18 tháng 1 2016

trừ điểm Lê Nhật Minh đi 

olm-logo.png