Bài 1: tìm n \(\in N\)
b)\(\frac{1}{9}.3^4.3^n=3^8\)
giúp với mai mk nộp rồi cảm ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow3^n:27^n=\dfrac{1}{9}\)
\(\Leftrightarrow\left(\dfrac{1}{9}\right)^n=\dfrac{1}{9}\)
hay n=1
b: \(\Leftrightarrow3^n\cdot3^2=3^8\)
=>n+2=8
hay n=6
c: \(\Leftrightarrow2^n\cdot\dfrac{9}{2}=9\cdot2^5\)
\(\Leftrightarrow2^n=2^6\)
hay n=6
d: \(\Leftrightarrow8^n=512\)
hay n=3
\(\frac{1}{2}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(=>\left(\frac{1}{2}+4\right)\cdot2^n=\frac{9}{2}\cdot2^6\)
\(=>\frac{9}{2}\cdot2^n=\frac{9}{2}\cdot2^6\)
\(=>2^n=2^6\)
\(=>n=6\)
\(\frac{1}{32^n}\cdot256^n=2048:2^2\)
\(=>\frac{1}{\left(2^5\right)^n}\cdot\left(2^8\right)^n=2^{10}:2^2\)
\(=>\frac{1}{2^{5n}}\cdot2^{8n}=2^8\)
\(=>2^{3n}=2^8\)
\(=>3n=8\)
\(=>n=\frac{8}{3}\)
\(\frac{1}{9}\). 27n=3n
=> 27n :9 =3n
=> 27n: 3n = 9
(33)n : 3n =9
33n : 3n =9
32n = 9
32n= 32
với 2n = 2
=> n=1
vậy n=1
\(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}\)
\(=\frac{3\left(2n-1\right)+8}{2n-1}\)
\(=3+\frac{8}{2n-1}\)
Để B nguyên thì \(2n-1\inƯ\left(8\right)\)
\(\Rightarrow2n-1=\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
Rồi bạn cứ thế vào . Trường Hợp ở đây là : \(2n-1\ne0\Rightarrow n\ne\frac{1}{2}\)
Ta có : \(2n-1=1\Rightarrow n=1\)
\(2n-1=-1\Rightarrow n=0\)
\(2n-1=2\Rightarrow n=1,5\)
\(2n-1=-2\Rightarrow n=-0,5\)
\(2n-1=4\Rightarrow n=2,5\)
\(2n-1=-4\Rightarrow n=-1,5\)
\(2n-1=8\Rightarrow n=4,5\)
\(2n-1=-8\Rightarrow n=-3,5\)
Để B nguyên thì 6n + 5 chia hết cho 2n - 1
=> 6n - 3 + 8 chia hết cho 2n - 1
=> 3.(2n - 1) + 8 chia hết cho 2n - 1
Do 3.(2n - 1) chia hết cho 2n - 1 => 8 chia hết cho 2n - 1
Mà 2n - 1 là số lẻ => \(2n-1\in\left\{1;-1\right\}\)
=> \(2n\in\left\{2;0\right\}\)
=> \(n\in\left\{1;0\right\}\)
bai2
UCLN (n,n+2)=d
=>(n+2)-n chia hết cho d
2 chia het cho d
vay d thuoc uoc cua 2={1,2}
nếu n chia hết cho 2 uoc chung lon nhta (n,n+2) la 2
neu n ko chia het cho 2=> (n,n+2) nguyen to cung nhau
BCNN =n.(n+2) neu n le
BCNN=n.(n+2)/2
\(\frac{1}{9}\cdot3^4\cdot3^n=3^8\)
\(=>3^n=3^8:3^4:\frac{1}{9}\)
\(=>3^n=3^8:3^4\cdot9\)
\(=>3^n=3^8:3^4\cdot3^2\)
\(=>3^n=3^6\)
\(=>n=6\)
b) \(\frac{1}{9}.3^4.3^n=3^8\)
\(\Rightarrow\left(\frac{1}{3}\right)^2.3^4.3^n=3^8\)
\(\Rightarrow\frac{1}{3^2}.3^4.3^n=3^8\)
\(\Rightarrow3^2.3^n=3^8\)
\(\Rightarrow3^n=3^8:3^2\)
\(\Rightarrow3^n=3^6\)
\(\Rightarrow n=6\)
Vậy n = 6