K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2016

A B C D H

Gọi hình bình hành đó là ABCD , từ A kẻ đường cao AH xuống cạnh CD (H thuộc CD)

Ta có : \(AH=AD.sinD\)

\(\Rightarrow S_{ABCD}=CD.AH=CD.AD.sinD\)

Vậy ta có điều phải chứng minh

23 tháng 8 2017

A) Vẽ t/g ABC (A là góc nhọn), đường cao BH. 
1/2.AB.AC.sinA = 1/2.AB.AC.(BH/AB) = 1/2.BH.AC = S(ABC)

26 tháng 6 2017

a, Giả sử tam giác ABC có  A ^ < 90 0  kẻ đường cáo BH. Ta có BH=AB.sin A ^

=>  S ∆ A B C = 1 2 A C . B H =  1 2 A B . A C . sin A

b, Giả sử tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại O có  A O B ^ = α < 90 0 . Kẻ AH ⊥ BD, tại H và CK ⊥ BD tại K

Ta có: AH = OA.sinα

=>  S A B D = 1 2 B D . A H =  1 2 B D . O A . sin α

Tương tự:  S C B D = 1 2 B D . C K =  1 2 B D . O C . sin α

=>  S A B C D = S A B D + S C B D =  1 2 B D . O A . sin α +  1 2 B D . O C . sin α =  1 2 B D . A C . sin α

23 tháng 9 2015

Gọi Tam giác ABC cho dẽ làm . Kẻ AH vg BC 

Tam giác AHB vuông tại H , theo HT giữa cạnh và góc :

   AH = AB .sin B 

Ta có : \(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}AB.sinB.BC\)

23 tháng 9 2015

Nguyễn Quỳnh Trâm Lâu rồi mà không dùng@@

\(1. Sử dụng hai góc kề bù có ba điểm nằm trên hai cạnh là hai tia đối nhau. 2. Ba điểm cùng thuộc một tia hoặc một một đường thẳng 3. Trong ba đoạn thẳng nối hai trong ba điểm có một đoạn thẳng bằng tổng hai đoạn thẳng kia. 4. Hai đoạn thẳng cùng đi qua hai trong ba điểm ấy cùng song song với đường thẳng thứ ba. 5. Hai đường thẳng cùng đi qua hai trong ba điểm ấy cùng vuông góc với...
Đọc tiếp

\(1. Sử dụng hai góc kề bù có ba điểm nằm trên hai cạnh là hai tia đối nhau. 2. Ba điểm cùng thuộc một tia hoặc một một đường thẳng 3. Trong ba đoạn thẳng nối hai trong ba điểm có một đoạn thẳng bằng tổng hai đoạn thẳng kia. 4. Hai đoạn thẳng cùng đi qua hai trong ba điểm ấy cùng song song với đường thẳng thứ ba. 5. Hai đường thẳng cùng đi qua hai trong ba điểm ấy cùng vuông góc với đường thẳng thứ ba. 6. Đường thẳng cùng đi qua hai trong ba điểm ấy có chứa điểm thứ ba. 7. Sử dụng tính chất đường phân giác của một góc, tính chất đường trung trực của đoạn thẳng, tính chất ba đường cao trong tam giác . 8. Sử dụng tính chất hình bình hành. 9. Sử dụng tính chất góc nội tiếp đường tròn. 10. Sử dụng góc bằng nhau đối đỉnh 11. Sử dụng trung điểm các cạnh bên, các đường chéo của hình thang thẳng hàng 12. Chứng minh phản chứng 13. Sử dụng diện tích tam giác tạo bởi ba điểm bằng 0 14. Sử dụng sự đồng qui của các đường thẳng.\)

0
21 tháng 11 2017

Giả sử hình bình hành MNPQ có MN = 12cm, MQ = 15cm,  ∠ NMQ = 1100

Ta có:  ∠ NMQ +  ∠ MNP = 180 °  (hai góc trong cùng phía)

Suy ra: MNP =  180 °  - NMQ

180 ° - 110 ° = 70 °

Kẻ MR ⊥ NP

Trong tam giác vuông MNR, ta có:

MR = MN.sin ∠ MNP =12.sin 70 °  ≈ 11,276 (cm)

Vậy S M N P Q  = MN.NP ≈ 11,276.15 = 169,14 ( c m 2 )

4 tháng 6 2021

Giả sử ta có hình bình hành ABCD, đường chéo AC, AB=12cm, AC=10cm, `\hat(ABC)=150^o`.

`S_(ABC) = 1/2 . 10. 12 . sinABC = 30 (cm^2)`

Vì đường chéo AC chia hình bình hành ABCD ra 2 tam giác bằng nhau.

`=> S_(ABCD) = 2.S_(ABC) = 60(cm^2)`

`=>` B.

4 tháng 6 2021

kẻ AH⊥BC; AB=10;BC=12

∠ABC=150

⇒∠ABH=30

xét ΔAHB có ∠H=90

⇒sin B=\(\dfrac{AH}{AB}\)⇒AH=\(\dfrac{1}{2}\).10=5

⇒SABCD=AH.AB=5.12=60

⇒chọn B