a) Cho tam giác ABC vuông tại A. Tia phân giác BD chia AC thành 2 phần sao cho CD = 2AD. Tính số đo góc ABC.
b) Cho tam giác ABC có A = 70o, B = 60o. Đường tròn tâm O ngoại tiếp tam giác ABC. Tính số đo góc AOB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
Đặt \(a = BC,b = AC,c = AB.\)
a) Áp dụng công thức \(S = \frac{1}{2}bc\sin A\), ta có: \({S_{ABC}} = \frac{1}{2}.8.6.\sin {60^o} = \frac{1}{2}.8.6.\frac{{\sqrt 3 }}{2} = 12\sqrt 3 \)
b) Áp dụng định lí cosin cho tam giác ABC ta được:
\(\begin{array}{l}B{C^2} = {a^2} = {8^2} + {6^2} - 2.8.6.\cos {60^o} = 52\\ \Rightarrow BC = 2\sqrt {13} \end{array}\)
Xét tam giác IBC ta có:
Góc \(\widehat {BIC} = 2.\widehat {BAC} = {120^o}\)(góc ở tâm và góc nội tiếp cùng chắn một cung)
\(IB = IC = R = \frac{a}{{2\sin A}} = \frac{{2\sqrt {13} }}{{2.\frac{{\sqrt 3 }}{2}}} = \frac{{2\sqrt {39} }}{3}.\)
\( \Rightarrow {S_{IBC}} = \frac{1}{2}.\frac{{2\sqrt {39} }}{3}.\frac{{2\sqrt {39} }}{3}\sin {120^o} = \frac{{13\sqrt 3 }}{3}.\)
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ACB}+60^0=90^0\)
hay \(\widehat{ACB}=30^0\)(1)
Xét ΔABC có \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\left(30^0< 60^0< 90^0\right)\)
nên AB<AC<BC
b) Xét ΔABD vuông tại A và ΔKBD vuông tại K có
BD chung
\(\widehat{ABD}=\widehat{KBD}\)(BD là tia phân giác của \(\widehat{ABK}\))
Do đó: ΔABD=ΔKBD(cạnh huyền-góc nhọn)
c) Ta có: BD là tia phân giác của \(\widehat{ABC}\)(gt)
nên \(\widehat{ABD}=\widehat{DBC}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)(2)
Từ (1) và (2) suy ra \(\widehat{DBC}=\widehat{DCB}\)
Xét ΔDBC có \(\widehat{DBC}=\widehat{DCB}\)(cmt)
nên ΔDBC cân tại D(Định lí đảo của tam giác cân)
Xét ΔBDK vuông tại K và ΔCDK vuông tại K có
DB=DC(ΔDBC cân tại D)
DK chung
Do đó: ΔBDK=ΔCDK(Cạnh huyền-cạnh góc vuông)
Suy ra: BK=CK(hai cạnh tương ứng)
hay K là trung điểm của BC(Đpcm)
a: O là trung điểm của BC
b: Xét \(\left(\dfrac{BH}{2}\right)\) có
ΔBDH là tam giác nội tiếp
BH là đường kính
Do đó: ΔBDH vuông tại D
Xét \(\left(\dfrac{CH}{2}\right)\)có
ΔCHE nội tiếp đường tròn
CH là đường kính
Do đó: ΔCHE vuông tại E
Xét tứ giác ADHE có
\(\widehat{AEH}=\widehat{ADH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
a)
Theo tính chất đường phân giác áp dụng cho \(\Delta ABC\) có BD là phân giác góc ABC \(\Rightarrow\frac{AB}{BC}=\frac{AD}{DC}=\frac{1}{2}\)
\(\Delta ABC\) vuông tại A\(\Rightarrow\tan B=\frac{AB}{BC}=\frac{1}{2}\Rightarrow\widehat{B}\approx27\)
b,
Thấy \(\widehat{ACB}\) nội tiếp \(\left(O\right)\) chắn cung AB nhỏ
\(\Rightarrow\widehat{ACB}=\frac{1}{2}sđ\overline{AB}\left(1\right)\)
Thấy \(\widehat{AOB}\) chắn cung AB nhỏ \(\Rightarrow\widehat{AOB}=sđ\overline{AB}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{AOB}=2\widehat{ACB}=2\left(180^o-70^o-60^o\right)=2.50^o=100^o\)