K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2016

 a)

A C B D Theo tính chất đường phân giác áp dụng cho \(\Delta ABC\) có BD là phân giác góc ABC \(\Rightarrow\frac{AB}{BC}=\frac{AD}{DC}=\frac{1}{2}\)

\(\Delta ABC\) vuông tại A\(\Rightarrow\tan B=\frac{AB}{BC}=\frac{1}{2}\Rightarrow\widehat{B}\approx27\)

b,  O C A B

Thấy \(\widehat{ACB}\) nội tiếp \(\left(O\right)\) chắn cung AB nhỏ 

\(\Rightarrow\widehat{ACB}=\frac{1}{2}sđ\overline{AB}\left(1\right)\)

Thấy \(\widehat{AOB}\) chắn cung AB nhỏ \(\Rightarrow\widehat{AOB}=sđ\overline{AB}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\widehat{AOB}=2\widehat{ACB}=2\left(180^o-70^o-60^o\right)=2.50^o=100^o\)

 

a: góc ADH+góc AEH=180 độ

=>ADHE nội tiếp

c: Kẻ tiếp tuyến Ax của (O)

=>góc xAC=góc ABC=góc ADE

=>DE//Ax

=>OA vuông góc DE

20 tháng 10 2017

mn giúp em làm ý e vs ạ,thanks mn nhiều ^^

a: AC=9

b: \(\tan B=\dfrac{AC}{AB}=\dfrac{9}{12}\)

Xét ΔABC vuông tại A có 

\(\sin C=\dfrac{AB}{BC}=\dfrac{4}{5}\)

nên \(\widehat{C}=53^0\)

16 tháng 12 2019

A B C O M I N a b c c a b

Gọi M; N lần lượt là tiếp điểm của AB; AC  với đường tròn.

=> BI = BM = b; AM = AN = a; CN = CI = c

Theo bài ra :

AB . AC = 2IB. IC 

=> (AM + MB ) ( AN + NC) = 2IB . IC

=> ( a + b ) ( a + c ) = 2 bc

<=> a\(^2\)+ ab + ac + bc = 2bc 

<=> a\(^2\)+ ab + ac = bc

<=> 2a\(^2\)+2ab + 2ac = 2bc

<=> ( a\(^2\)+ 2ab + b\(^2\)) + ( a\(^2\)+ 2ac + c\(^2\)) = b\(^2\)+ 2bc + c\(^2\)

<=> (a + b ) \(^2\)+ ( a+ c )\(^2\)= ( b + c ) \(^2\)

=> AB \(^2\)+ AC \(^2\)= BC \(^2\)

=> Tam giác ABC vuông tại A

=> ^A = 90 độ.

25 tháng 12 2022

<=> (a+2ab+b2)+(a2+2ac+c2)=(b2+2bc+c2) bước này ở đâu và làm sao để xuất hiện bvà c2  vậy ạ

2 tháng 12 2021

a) Áp dụng HTL :

\(\left\{{}\begin{matrix}AH^2=BH.HC\Rightarrow AH=\sqrt{1,8.3,2}=2,4\left(cm\right)\\AB^2=BH.BC\Rightarrow AB=\sqrt{1,8\left(1,8+3,2\right)}=3\left(cm\right)\\AC^2=HC.BC\Rightarrow AC=\sqrt{3,2\left(1,8+3,2\right)}=4\left(cm\right)\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}tanB=\dfrac{AC}{AB}=\dfrac{4}{3}\Rightarrow\widehat{B}\approx53^0\\tanC=\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow\widehat{C}\approx37^0\end{matrix}\right.\)