K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

1. (3x - 5)2 - (3x + 1)2 = 8

=> (3x - 5 - 3x - 1)(3x - 5 + 3x + 1) = 8

=> -6(6x - 4) = 8

=> 6x - 4 = \(\dfrac{-4}{3}\)

\(\Rightarrow x=\dfrac{4}{9}\)

2) 2x(8x - 3) - (4x - 3)2 = 27

=> 16x2 - 6x - 16x2 + 24x - 9 = 27

=> 18x - 9 = 27

=> x = 2

3) (2x - 3)2 - (2x + 1)2 = 3

=> (2x - 3 - 2x - 1)(2x - 3 + 2x +1) = 3

=> -4(4x - 2) = 3

=> 4x - 2 = \(\dfrac{-3}{4}\)

\(\Rightarrow x=\dfrac{5}{16}\)

4) (x + 5)2 - x2 = 45

=> (x + 5 - x)(x + 5 + x) = 45

=> 5(2x + 5) = 45

=> 2x + 5 = 9

=> x = 2

5) (x - 3)3 - (x - 3)(x2 + 3x + 9) + 9(x + 1)2 = 18

=> x3 - 9x2 + 27x - 27 - x3 + 27 + 9(x2 + 2x + 1) = 18

=> -9x2 + 27x + 9x2 + 18x + 9 = 18

=> 45x + 9 = 18

=> 45x = 9

=> x = \(\dfrac{1}{5}\)

6) x(x - 4)(x + 4) - (x - 5)(x2 + 5x + 25) = 13

=> x (x2 - 16) - (x3 - 125) = 13

=> x3 - 16x - x3 + 125 = 13

=> -16x = -112

=> x = 7.

2 tháng 8 2017

Bạn ơi có chắc đúng ko đấy.

27 tháng 7 2016

Hỏi đáp Toán

3 tháng 6 2021

Thay : \(x=3\) vào phương trình :

\(12-2\cdot\left(1-3\right)^2=4\cdot\left(3-m\right)-\left(3-3\right)\cdot\left(2\cdot3+5\right)\)

\(\Leftrightarrow12-8=12-4m\)

\(\Leftrightarrow4m=8\)

\(\Leftrightarrow m=2\)

3 tháng 6 2021

mình cảm ơn ạ:>

\(\Leftrightarrow20\left(x^2-4x+3\right)-24\left(4x^2-4x+1\right)=15\left(9x^2+6x+1\right)+90x\left(x-1\right)\)

\(\Leftrightarrow20x^2-80x+60-96x^2+96x-24=135x^2+90x+15+90x^2-90x\)

\(\Leftrightarrow-301x^2+16x+21=0\)

\(\text{Δ}=16^2-4\cdot\left(-301\right)\cdot21=25540\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là 

\(\left\{{}\begin{matrix}x_1=\dfrac{-16-\sqrt{25540}}{-602}=\dfrac{16+\sqrt{25540}}{602}\\x_2=\dfrac{16-\sqrt{25540}}{602}\end{matrix}\right.\)

\(\Leftrightarrow x^3-6x^2+12x-8+3\left(4x^2-12x+9\right)=x^3+9x^2+27x+27-5\left(9x^2+6x+1\right)+\left(x-1\right)\left(x-3\right)\)

\(\Leftrightarrow-6x^2+12x-8+12x^2-36x+27=9x^2+27x+27-45x^2-30x-5+\left(x-1\right)\left(x-3\right)\)

\(\Leftrightarrow6x^2-24x+19=-36x^2-3x+22+\left(x-1\right)\left(x-3\right)\)

\(\Leftrightarrow42x^2-21x-3-x^2+4x-3=0\)

\(\Leftrightarrow41x^2-17x-6=0\)

\(\Delta=\left(-17\right)^2-4\cdot41\cdot\left(-6\right)=1273\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{17-\sqrt{1273}}{82}\\x_2=\dfrac{17+\sqrt{1273}}{82}\end{matrix}\right.\)

27 tháng 7 2016

\(\Leftrightarrow4x^2-4x+1-4x^2-16x-16=5x^2+5x-10-7x^2-7x\)

\(\Leftrightarrow-20x-15=-2x^2-2x-10\)

\(\Leftrightarrow2x^2-18x-5=0\)

mik giải đến đây lại ko có nghiệm bạn sem lại sem có sai đề ko nha

 

27 tháng 7 2016

Hỏi đáp Toán

\(\Leftrightarrow4x^2+4x+1-3\left(x^2-4x+4\right)+2\left(x^2+x-2\right)=4-2+2x\)

\(\Leftrightarrow4x^2+4x+1-3x^2+12x-12+2x^2+2x-4=2x+2\)

\(\Leftrightarrow3x^2+18x-15-2x-2=0\)

\(\Leftrightarrow3x^2+16x-17=0\)

\(\text{Δ}=16^2-4\cdot3\cdot\left(-17\right)=460>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-16-2\sqrt{115}}{6}=\dfrac{-8-\sqrt{115}}{3}\\x_2=\dfrac{-8+\sqrt{115}}{3}\end{matrix}\right.\)

5 tháng 3 2017

a) Áp dụng bđt |a| + |b| \(\ge\) |a+b| ta có:

\(\left|x-1\right|+\left|x+3\right|=\left|1-x\right|+\left|x+3\right|\ge\left|1-x+x+3\right|\)

\(\ge\left|4\right|=4\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix}x-1\le0\\x+3\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x\le1\\x\ge-3\end{matrix}\right.\)\(\Leftrightarrow-3\le x\le1\)

b) Xét từng khoảng

+ \(x< -\frac{3}{2}\)

+ \(-\frac{3}{2}\le x< 4\)

+ \(x\ge4\)

5 tháng 3 2017

a) Vì \(\left|x-1\right|+\left|x+3\right|=4\)

\(\Rightarrow\left|1-x\right|+\left|x+3\right|=4\)

Nhận thấy \(\left[{}\begin{matrix}\left|1-x\right|\ge1-x\forall x\\\left|x+3\right|\ge x+3\forall x\end{matrix}\right.\)

\(\Rightarrow\left|1-x\right|+\left|x+3\right|\ge1-x+x+3\)

\(\Rightarrow\left|1-x\right|+\left|x+3\right|\ge4\)

Dấu \("="\) xảy ra khi \(\left[{}\begin{matrix}1-x\ge0\\x+3\ge0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\le1\\x\ge-3\end{matrix}\right.\) \(\Rightarrow-3\le x\le1\)

\(\Rightarrow x\in\left\{-3-2;-1;0;1\right\}\)

Vậy \(x\in\left\{-3;-2;-1;0;1\right\}\).