Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[\left(1+\frac{1}{x^2}\right)\div\left(1+2x+x^2\right)+\frac{2}{\left(x+1\right)^3}\times\left(1+\frac{1}{x}\right)\right]\div\frac{x-1}{x^3}\)
\(=\left[\frac{x^2+1}{x^2}\times\frac{1}{\left(x+1\right)^2}+\frac{2}{\left(x+1\right)^3}\times\frac{x+1}{x}\right]\div\frac{x-1}{x^3}\)
\(=\left(\frac{x^2+1}{x^2}\times\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(x+1\right)^2}\times\frac{2}{x}\right)\div\frac{x-1}{x^3}\)
\(=\left(\frac{1}{\left(x+1\right)^2}\times\left(\frac{x^2+1}{x^2}+\frac{2}{x}\right)\right)\div\frac{x-1}{x^3}\)
\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x^3+2x^2+x}{x^3}\right)\div\frac{x-1}{x^3}\)
\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x\left(x^2+2x+1\right)}{x^3}\right)\div\frac{x-1}{x^3}\)
\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x\left(x+1\right)^2}{x^3}\right)\div\frac{x-1}{x^3}\)
\(=\frac{1}{x^2}\times\frac{x^3}{x-1}\)
\(=\frac{x}{x-1}\)
Đặt \(\begin{cases}f\left(x\right)=\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\\\left(x+y+z\right)^2=t\left(1\right)\end{cases}\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=t\)
\(\Leftrightarrow x^2+y^2+z^2=t-2\left(xy+yz+zx\right)\)
\(\Rightarrow f\left(x\right)=\left[t-2\left(xy+yz+zx\right)\right]t+\left(xy+yz+zx\right)^2\)
\(\Rightarrow f\left(x\right)=t^2-2t\left(xy+z+zx\right)+\left(xy+yz+zx\right)^2\)
\(\Rightarrow f\left(x\right)=\left(t-xy-yz-zx\right)^2\)
Thay (1) vào ta được \(f\left(x\right)=\left[\left(x+y+z\right)^2-xy-yz-zx\right]\)
\(f\left(x\right)=\left[x^2+y^2+x^2+xy+yz+zx\right]\)
2x3 + 3x2 + 6x + 5 = 02
<=> 2x3 + x2 + 5x + 2x2 + x + 5 = 0
<=> x(2x2 + x + 5) + (2x2 + x + 5) = 0
<=> (2x2 + x + 5)(x + 1) = 0
<=> x + 1 = 0 (vì 2x2 + x + 5 \(\ge\) 4,875 > 0 \(\forall\) x)
<=> x = - 1
Vậy tập nghiệm của pt là \(S=\left\{-1\right\}\)
b) 4x4 + 12x3 + 5x2 - 6x - 15 = 0
<=> 4x4 + 10x3 + 2x3 + 5x2 - 6x - 15 = 0
<=> 2x3(2x + 5) + x2(2x + 5) - 3(2x + 5) = 0
<=> (2x + 5)(2x3 + x2 - 3) = 0
<=> (2x + 5)(2x3 - 2x2 + 3x2 - 3) = 0
<=> (2x + 5)(x - 1)(2x2 + 3x + 3) = 0
<=> (2x + 5)(x - 1)[x2 + (x + 3/2)2 + 3/4]= 0
Mà x2 + (x + 3/2)2 + 3/4 > 0\(\forall x\)
\(\Rightarrow\left[\begin{matrix}2x+5=0\\x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=-\frac{5}{2}\\x=1\end{matrix}\right.\)
Vậy ...
\(x+1=\left(x+1\right)^{^2}\)
\(\Rightarrow\left(x+1\right)^2-\left(x+1\right)=0\)
\(=\left(x+1\right)x=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x+1=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=-1\end{array}\right.\)
Ta có :
\(x+1=\left(x+1\right)^2\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+1=0\\x+1=1\end{array}\right.\)
\(=>\left[\begin{array}{nghiempt}x=0-1=-1\\x=1-1=0\end{array}\right.\)
Vậy \(x\in\left\{-1;0\right\}\)
bạn đăng vừa thôi nhé chứ đăng nhiều thế này ít người khiên trì giải hết lắm bạn nên đăng từng bài cho đỡ dài