Giả sử tồn tại hai số hữu tỉ x và y thỏa mãn đẳng thức 1x+y =1x +1y Suy ra 1x+y =y+xxy ⇔xy=(x+y).(x+y) ⇔(x+y)2=xy Vì x + y trái dấu ⇒ (x + y)2 > 0 nên xy > 0 nhưng x và y là hai số trái dấu, không đối nhau nên xy < 0. Do đó đẳng thức trên không xảy ra.
Vậy không tồn tại hai số hữu tỉ x và y trái dấu, không đối nhau thỏa mãn đề bài.
Tất cảToánVật lýHóa họcSinh họcNgữ vănTiếng anhLịch sửĐịa lýTin họcCông nghệGiáo dục công dânÂm nhạcMỹ thuậtTiếng anh thí điểmLịch sử và Địa lýThể dụcKhoa họcTự nhiên và xã hộiĐạo đứcThủ côngQuốc phòng an ninhTiếng việtKhoa học tự nhiên
Ta có : \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\Leftrightarrow\frac{1}{x+y}=\frac{x+y}{xy}\Leftrightarrow\left(x+y\right)^2=xy\)
Mặt khác, ta có : \(\left(x-y\right)^2\ge0\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy>xy\)
Do đó dấu "=" không xảy ra
=> Không tồn tại hai số x,y thỏa mãn giả thiết
Ta dùng phương pháp chứng minh phản chứng:
Giả sử tồn tại hai số hữu tỉ x và y thỏa mãn đẳng thức 1x+y =1x +1y
Suy ra 1x+y =y+xxy ⇔xy=(x+y).(x+y) ⇔(x+y)2=xy
Vì x + y trái dấu ⇒ (x + y)2 > 0 nên xy > 0 nhưng x và y là hai số trái dấu, không đối nhau nên xy < 0. Do đó đẳng thức trên không xảy ra.
Vậy không tồn tại hai số hữu tỉ x và y trái dấu, không đối nhau thỏa mãn đề bài.