K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2016

Ta có : \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\Leftrightarrow\frac{1}{x+y}=\frac{x+y}{xy}\Leftrightarrow\left(x+y\right)^2=xy\) 

Mặt khác, ta có : \(\left(x-y\right)^2\ge0\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy>xy\)

Do đó dấu "=" không xảy ra 

=> Không tồn tại hai số x,y thỏa mãn giả thiết

6 tháng 9 2016

Ta dùng phương pháp chứng minh phản chứng:

Giả sử tồn tại hai số hữu tỉ x và y thỏa mãn đẳng thức 1x+y =1x +1y 
Suy ra 1x+y =y+xxy  ⇔xy=(x+y).(x+y) ⇔(x+y)2=xy
Vì x + y trái dấu ⇒ (x + y)2 > 0 nên xy > 0 nhưng x và y là hai số trái dấu, không đối nhau nên xy < 0. Do đó đẳng thức trên không xảy ra.

             Vậy không tồn tại hai số hữu tỉ x và y trái dấu, không đối nhau thỏa mãn đề bài.