K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2017

nhìn hoa mắt và nhiều quá

Bài 1:

a) \(3\left(x+5\right)=x-7\)

\(\Leftrightarrow3x+15=x-7\)

\(\Leftrightarrow3x+15-x=-7\)

\(\Leftrightarrow2x+15=-7\)

\(\Leftrightarrow2x=-22\)

\(\Leftrightarrow x=-11\)

Vậy \(x=-11\)

Bài 2:

\(\left|x+2\right|-14=-9\)

\(\Leftrightarrow\left|x+2\right|=5\)

Chia 2 trường hợp:

\(\Leftrightarrow\orbr{\begin{cases}x+2=5\\x+2=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-7\end{cases}}}\)

Vậy \(x\in\left\{3;-7\right\}\)

Hơi vội, sai thì thôi nhé!

4 tháng 10 2023

2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

 Chứng minh thì bạn chỉ cần bung 2 vế ra là được.

 \(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)

 Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).

 Do đó \(P⋮4\)