K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2016

x4 - 7x3 +13x2 - 7x +12 =0

<=>x4-7x3+12x2+x2-7x+12=0

<=>x2(x2-7x+12)+(x2-7x+12)=0

<=>(x2-7x+12)(x2+1)=0

<=>[x2-4x-3x+12](x2​+1)=0

<=>[x(x-4)-3(x-4)](x2+1)=0

<=>(x-3)(x-4)(x2+1)=0

<=>x-3=0 hoặc x-4=0 hoặc x2+1=0

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=4\end{array}\right.\).Ta thấy: \(x^2+1\ge1>0\) -->vô nghiệm

Vậy pt trên có nghiệm là x=3 hoặc 4

 

26 tháng 8 2016

\(x^4-7x^3+13x^2-7x+12=0\\ < =>x^4-7x^3+12x^2+x^2-7x+12=0\\ < =>\left(x^2-7x+12\right)\left(x^2+1\right)=0\\ \)

\(< =>\left[x^2-4x-3x+12\right]\left(x^2+1\right)=0\\ < =>\left(x-3\right)\left(x-4\right)\left(x^2+1\right)=0\\ \)

x-3=0 hoặc x-4=0 . Ta thấy :x2+1\(\ge\)1>0--> vô nghiệm

Vậy pt trên có nghiệm là x=3;x=4

23 tháng 12 2017

a) ( x 2  – 4x + 1)( x 2  – 2x + 3).     b) (3x – y – 1)(x – 7y – 1).

`@` `\text {Ans}`

`\downarrow`

`a)`

Thu gọn:

`P(x)=`\(5x^4 + 3x^2 - 3x^5 + 2x - x^2 - 4 +2x^5\)

`= (-3x^5 + 2x^5) + 5x^4 + (3x^2 - x^2) + 2x - 4`

`= -x^5 + 5x^4 + 2x^2 + 2x - 4`

`Q(x) =`\(x^5 - 4x^4 + 7x - 2 + x^2 - x^3 + 3x^4 - 2x^2\)

`= x^5 + (-4x^4 + 3x^4) - x^3 + (x^2 - 2x^2) + 7x - 2`

`= x^5 - x^4 - x^3 - x^2 + 7x - 2`

`@` Tổng:

`P(x)+Q(x)=`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) + (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)

`= -x^5 + 5x^4 + 2x^2 + 2x - 4 + x^5 - x^4 - x^3 - x^2 + 7x - 2`

`= (-x^5 + x^5) - x^3 + (5x^4 - x^4) + (2x^2 - x^2) + (2x + 7x) + (-4-2)`

`= 4x^4 - x^3 + x^2 + 9x - 6`

`@` Hiệu:

`P(x) - Q(x) =`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) - (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)

`= -x^5 + 5x^4 + 2x^2 + 2x - 4 - x^5 + x^4 + x^3 + x^2 - 7x + 2`

`= (-x^5 - x^5) + (5x^4 + x^4) + x^3 + (2x^2 + x^2) + (2x - 7x) + (-4+2)`

`= -2x^5 + 6x^4 + x^3 + 3x^2 - 5x - 2`

`b)`

`@` Thu gọn:

\(H (x) = ( 3x^5 - 2x^3 + 8x + 9) - ( 3x^5 - x^4 + 1 - x^2 + 7x)\)

`= 3x^5 - 2x^3 + 8x + 9 - 3x^5 + x^4 - 1 + x^2 - 7x`

`= (3x^5 - 3x^5) + x^4 - 2x^3 - x^2 + (8x + 7x) + (9+1)`

`= x^4 - 2x^3 - x^2 + 15x + 10`

\(R( x) = x^4 + 7x^3 - 4 - 4x ( x^2 + 1) + 6x\)

`= x^4 + 7x^3 - 4 - 4x^3 - 4x + 6x`

`= x^4 + (7x^3 - 4x^3) + (-4x + 6x) - 4`

`= x^4 + 3x^3 + 2x - 4`

`@` Tổng:

`H(x)+R(x)=` \((x^4 - 2x^3 - x^2 + 15x + 10)+(x^4 + 3x^3 + 2x - 4)\)

`= x^4 - 2x^3 - x^2 + 15x + 10+x^4 + 3x^3 + 2x - 4`

`= (x^4 + x^4) + (-2x^3 + 3x^3) - x^2 + (15x + 2x) + (10-4)`

`= 2x^4 + x^3 - x^2 + 17x + 6`

`@` Hiệu: 

`H(x) - R(x) =`\((x^4 - 2x^3 - x^2 + 15x + 10)-(x^4 + 3x^3 + 2x - 4)\)

`=x^4 - 2x^3 - x^2 + 15x + 10-x^4 - 3x^3 - 2x + 4`

`= (x^4 - x^4) + (-2x^3 - 3x^3) - x^2 + (15x - 2x) + (10+4)`

`= -5x^3 - x^2 + 13x + 14`

`@` `\text {# Kaizuu lv u.}`

20 tháng 9 2017

hau ta cai j ?

a: Ta có: x=31

nên x-1=30

Ta có: \(A=x^3-30x^2-31x+1\)

\(=x^3-x^2\left(x-1\right)-x^2+1\)

\(=x^3-x^3+x^2-x^2+1\)

=1

c: Ta có: x=16

nên x+1=17

Ta có: \(C=x^4-17x^3+17x^2-17x+20\)

\(=x^4-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+20\)

\(=x^4-x^4-x^3+x^3+x^2-x^2-x+20\)

\(=20-x=4\)

d: Ta có: x=12

nên x+1=13

Ta có: \(D=x^{10}-13x^9+13x^8-13x^7+...+13x^2-13x+10\)

\(=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...+x^2\left(x+1\right)-x\left(x+1\right)+10\)

\(=10-x\)

=-2

d: Ta có: x=12

nên x+1=13

Ta có: \(D=x^{10}-13x^9+13x^8-13x^7+...+13x^2-13x+10\)

\(=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...+x^2\left(x+1\right)-x\left(x+1\right)+10\)

\(=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...+x^3+x^2-x^2-x+1+9\)

\(=-x+10=-2\)

10 tháng 5 2022

Đặt \(A\left(x\right)=0\)

\(\rightarrow7x^3-5x^2-7x+3-7x^3+5x^2+17x+27=0\)

\(\Leftrightarrow10x+30=0\)

\(\Leftrightarrow10x=-30\)

\(\Leftrightarrow x=-3\)

Vậy \(x=-3\) là nghiệm của đa thức \(A\left(x\right)\)

10 tháng 5 2022

`A(x)=7x^3-5x^2-7x+3-7x^3+5x^2+17x+27`

`A(x)=(7x^3-7x^3)-(5x^2-5x^2)+(-7x+17x)+(3+27)`

`A(x)=10x+30`

Cho `A(x)=0`

`=>10x+30=0`

`=>10x=-30`

`=>x=-3`

Vậy nghiệm của đa thức `A(x)` là `x=-3`

18 tháng 12 2019

Đáp án:B.

Với f(x) =  x 3  + 5x + 6 thì vì f'(x) = 3 x 2  + 5 > 0, ∀ x ∈ R nên hàm số f(x) luôn đồng biến trên R. Mặt khác f(-1) = 0. Vậy phương trình f(x) = 0 có nghiệm duy nhất trên R.

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

a. 

$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$

b.

$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$

c.

$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$

d.

$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$

$=(x+1)(x^2-4x+1)$

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

e.

$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$

$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$

f.

$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$

$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$

g.

$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$

$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$

$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$

$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$

h.

$x^6+2x^5+x^4-2x^3-2x^2+1$

$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$

$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$