K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2016

/hoi-dap/question/32725.html

NV
22 tháng 6 2021

Lớp 12 thì chúng ta tọa độ hóa cho đơn giản

Gọi O là trung điểm AB \(\Rightarrow SO\perp\left(ABCD\right)\)

\(SO=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)

\(AO=BO=\dfrac{a}{2}\)

Đặt hệ trục Oxyz vào chóp, với gốc O trùng O, tia Oz trùng tia OS, tia Ox trùng tia OB, tia Oy trùng tia ON (với N là trung điểm CD). Quy ước \(\dfrac{a}{2}\) là 1 đơn vị độ dài

Ta được tọa độ các điểm: \(S\left(0;0;\sqrt{3}\right)\) ; \(C\left(1;2;0\right)\) ; \(A\left(-1;0;0\right)\) ; \(D\left(-1;2;0\right)\)

Do M là trung điểm SD \(\Rightarrow M\left(-\dfrac{1}{2};1;\dfrac{\sqrt{3}}{2}\right)\)

\(\overrightarrow{AM}=\left(\dfrac{1}{2};1;\dfrac{\sqrt{3}}{2}\right)\) ; \(\overrightarrow{SC}=\left(1;2;-\sqrt{3}\right)\) ; \(\overrightarrow{AC}=\left(2;2;0\right)\)

\(d\left(AM;SC\right)=\dfrac{\left|\left[\overrightarrow{AM};\overrightarrow{SC}\right].\overrightarrow{AC}\right|}{\left|\left[\overrightarrow{AM};\overrightarrow{SC}\right]\right|}=\dfrac{2\sqrt{5}}{5}=\dfrac{a\sqrt{5}}{5}\)

30 tháng 4 2019

Đáp án là C

ta có  S A B ⊥ A B C D S A B ∩ A B C D = A B S H ⊥ A B ⇒ S H ⊥ A B C D

mà  D I ⊥ C H D I ⊥ S H ⇒ D I ⊥ S H C ⇒ d D , S H C = D I = 2 a 2

ta có

  Δ B H C = Δ A H E ⇒ S Δ B H C = S Δ A H E ;   H E = H C

mà 

S A B C D = S A H C D + S Δ B H C = S A H C D + S Δ A H E = S Δ D C E

Tam giác SAB đều nên . S H = a 3

Tam giác  SHC có

H C = S C 2 − S H 2 = a 2 ⇒ E C = 2 H C = 2 a 2 .

Khi đó S A B C D = S Δ D C E = 1 2 D I . E C = 4 a 2 .

Vậy V A B C D = 1 3 S H . S A B C D = 1 3 a 3 .4 a 2 = 4 a 3 3 3 .

 

12 tháng 6 2019

Đáp án B

Ta có: S B A ^ = 60 ∘ ⇒ S A = A B tan 60 ∘ = a 3  

V A . A C D = 1 3 S A . S A C D = 1 3 . a 3 . a 2 2 = a 3 3 6

Lại có: V S . A M N V S . A C D = S M S C . S N S D = 1 4 ⇒ V S . A M N = a 3 3 24

6 tháng 11 2017

Chọn B.

Gọi Q là trung điểm CD, ta có PQ//SC//MN nên MN//(APQ)

=> d(MN, PQ)=d(MN, (APQ))=d(N,(APQ))

Vì  N D ⊥ H C N D ⊥ S H ⇒ N D ⊥ ( S H C )

⇒ N D ⊥ S C ⇒ N D ⊥ P Q

A Q → . N D → = ( A D → + D Q → ) . ( D C → + C N → ) = 0 → ⇒ A Q ⊥ N D

Vậy có

  N D ⊥ P Q N D ⊥ A Q ⇒ N D ⊥ A P Q   t ạ i   E ⇒ d ( M N , A P ) = N E

Mà có 

1 D E 2 = 1 D A 2 + 1 D Q 2 = 5 a 2 ⇒ D E = a 5

Và  D N = a 5 2 ⇒ E N = 3 a 5 10

Vậy  d ( M N , A P ) = 2 a 10