chóp SABCD có đáy ABCD là hình vuông cạnh=a SD= 3a/2 hình chiếu chiếu của góc S trên (ABCD) trùng với trung điểm H của AB. tính thể tích khối chóp SABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Gọi H là trung điểm của AD, N là trung điểm của AB
Có S H ⊥ A B C D ⇒ góc giữa SB và (ABCD) là góc SBH
Có
H B = a 2 + a 2 2 = a 5 2 S H = H B . tan S B H = a 5 2 . tan 60 0 = a 15 2 . S Δ M A B = 1 2 . M N . A B = a 2 2 V S . M A B = 1 3 . S H . S Δ M A B = 1 3 . a 15 2 . a 2 2 = a 3 15 12
Đáp án D
Gọi H là trung điểm của AD, N là trung điểm của AB
Có S H ⊥ A B C D ⇒ góc giữa SB và A B C D là góc SBH
Có
H B = a 2 + a 2 2 = a 5 2 S H = H B . tan S B H = a 5 2 . tan 60 0 = a 15 2 . S Δ M A B = 1 2 . M N . A B = a 2 2 V S . M A B = 1 3 . S H . S Δ M A B = 1 3 . a 15 2 . a 2 2 = a 3 15 12
Đáp án A
Ta có A D = H A 2 + A D 2 = a 2 2 + a 2 = a 5 2 ⇒ S H = S D 2 - A D 2 = a
Thể tích khối chóp đã cho là: V = 1 3 S H . S A B C D = 1 3 a . a 2 = 1 3 a 3 .
Do H là trung điểm của AB,
=> SH vuông (ABCD)
Do đó SH vuông HD. Có \(SH=\sqrt{SD^2-DH^2}=\sqrt{SD^2-\left(AH^2+AD^2\right)}=a\)
\(\Rightarrow V_{S.ABCD}=\frac{1}{3}S.H.S_{ABCD}=\frac{a^3}{3}\)
Gọi K là hình chiếu vuông góc với H trên BD vs2 E là là hình chiếu vuông góc của H trên SK.
Có : BD vuông HK, BD vuông SH, BD vuông (SHK)
=> BD vuông HE.
Mà HE vuông SK
Do đó HE vuông (SBD)
Ta có : HK = HB \(\sin\widehat{KBH}=\frac{a\sqrt{2}}{4}\)
=> HE = \(\frac{HS.HK}{\sqrt{HS^2+HK^2}}=\frac{4}{3}\)
Do đó, d (A,(SBD)) = 2d (H,(SBD)) = 2HE = 2a/3