Tìm x biết :
\(\left(x+1\right)^{x+2}=\left(x-1\right)^{x+6}\left(x\in Z\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1)\)
\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)
\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)
\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận )
TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại )
Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)
\(2)\)
\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)
\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)
\(\Rightarrow\)\(VT\ge VP\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại )
TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận )
\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)
Vậy \(1\le x\le5\) và \(y=-1\)
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)
\(a,\Rightarrow\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=-\dfrac{6}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}5x=\dfrac{1}{7}\\5x=-\dfrac{13}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{35}\\x=-\dfrac{13}{35}\end{matrix}\right.\\ b,\Rightarrow\left(-\dfrac{1}{8}\right)^x=\dfrac{1}{64}=\left(-\dfrac{1}{8}\right)^2\Rightarrow x=2\\ c,\Rightarrow\left(x-2\right)\left(2x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\\ d,\Rightarrow\left(x+1\right)^{x+10}-\left(x+1\right)^{x+4}=0\\ \Rightarrow\left(x+1\right)^{x+4}\left[\left(x+1\right)^6-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\\left(x+1\right)^6=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x+1=1\\x+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-2\end{matrix}\right.\\ e,\Rightarrow\dfrac{3}{4}\sqrt{x}=\dfrac{5}{6}\left(x\ge0\right)\\ \Rightarrow\sqrt{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{100}{81}\)
(x+x+x+x+x+...+x)+(1+3+5+...+99)=0
50x + 2500 = 0
50x=0- 2500
50x =-2500
x=-2500:50
x=-50
Vậy x=-50
1.a.
\(\left(x+1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)\ge m\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x^2+3x-10\right)\ge m\)
Đặt \(x^2+3x-10=t\ge-\dfrac{49}{4}\)
\(\Rightarrow\left(t+2\right)t\ge m\Leftrightarrow t^2+2t\ge m\)
Xét \(f\left(t\right)=t^2+2t\) với \(t\ge-\dfrac{49}{4}\)
\(-\dfrac{b}{2a}=-1\) ; \(f\left(-1\right)=-1\) ; \(f\left(-\dfrac{49}{4}\right)=\dfrac{2009}{16}\)
\(\Rightarrow f\left(t\right)\ge-1\)
\(\Rightarrow\) BPT đúng với mọi x khi \(m\le-1\)
Có 30 giá trị nguyên của m
1b.
Với \(x=0\) BPT luôn đúng
Với \(x\ne0\) BPT tương đương:
\(\dfrac{\left(x^2-2x+4\right)\left(x^2+3x+4\right)}{x^2}\ge m\)
\(\Leftrightarrow\left(x+\dfrac{4}{x}-2\right)\left(x+\dfrac{4}{x}+3\right)\ge m\)
Đặt \(x+\dfrac{4}{x}-2=t\) \(\Rightarrow\left[{}\begin{matrix}t\ge2\\t\le-6\end{matrix}\right.\)
\(\Rightarrow t\left(t+5\right)\ge m\Leftrightarrow t^2+5t\ge m\)
Xét hàm \(f\left(t\right)=t^2+5t\) trên \(D=(-\infty;-6]\cup[2;+\infty)\)
\(-\dfrac{b}{2a}=-\dfrac{5}{2}\notin D\) ; \(f\left(-6\right)=6\) ; \(f\left(2\right)=14\)
\(\Rightarrow f\left(t\right)\ge6\)
\(\Rightarrow m\le6\)
Vậy có 37 giá trị nguyên của m thỏa mãn
Nếu như anh Thắng nói :
(x+1)x+2=(x+1)x+6
Từ đó suy ra: x+1=0 hoặc 1
Nếu x+1=0=>x=-1
Nếu x+1=1=>x=0
Vậy x=0;1
đề sai r` (x+1)x+2=(x+1)x+6 ms đúng