Tìm x , y , z , biết :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\) và x+y-z = 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng DSTCBN:
Ta có:
\(\frac{40}{x-30}=\frac{20}{y-15}=\frac{28}{z-21}\Leftrightarrow\frac{x-30}{40}=\frac{y-15}{20}=\frac{z-21}{28}\)
\(\Rightarrow\frac{x-30}{10}=\frac{y-15}{5}=\frac{z-21}{7}\)
\(\frac{\Rightarrow x}{10}-\frac{30}{10}=\frac{y}{5}-\frac{15}{5}=\frac{z}{7}-\frac{21}{7}\)
\(\frac{\Rightarrow x}{10}-3=\frac{y}{3}-3=\frac{z}{7}-3\)
\(\frac{\Rightarrow x}{10}=\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{10}=\frac{y}{5}=\frac{z}{7}=t=\hept{\begin{cases}x=10t\\y=5t\\z=7t\end{cases}}\)
\(xyz=22400\Leftrightarrow350t^3=22400\Leftrightarrow t^3=64\Rightarrow t=4\)
\(\Rightarrow\hept{\begin{cases}x=40\\y=20\\z=28\end{cases}}\)
\(\text{Ta có:}\)\(\frac{40}{x-30}=\frac{20}{y-15}=\frac{28}{z-21}\)
\(\Leftrightarrow\frac{x-30}{40}=\frac{y-15}{40}=\frac{z-21}{28}\)
\(\Leftrightarrow\frac{x}{40}-\frac{30}{40}=\frac{y}{40}-\frac{15}{40}=\frac{z}{28}-\frac{21}{28}\)
\(\Leftrightarrow\frac{x}{40}-\frac{3}{4}=\frac{y}{20}-\frac{3}{4}=\frac{z}{28}-\frac{3}{4}\)\
\(\Leftrightarrow\frac{x}{40}=\frac{y}{20}=\frac{z}{28}\)
\(\text{đặt:}\)\(\frac{x}{40}=\frac{y}{20}=\frac{z}{28}=k\)
\(\Rightarrow x=40k\)
\(\Rightarrow y=20k\)
\(\Rightarrow z=28k\)
\(\text{Theo đề ta có :}\)\(x.y.z=22400\Rightarrow40k.20k.28k=22400\)
\(\Rightarrow22400.k^3=22400\)
\(\Rightarrow k^3=1\)
\(\Rightarrow k=\pm1\)
\(\text{Với k=1 thì :}\)\(\hept{\begin{cases}x=40\\y=20\\z=28\end{cases}}\)
\(\text{Với k=-1 thì :}\)\(\hept{\begin{cases}x=-40\\y=-20\\z=-28\end{cases}}\)
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
a) Ta có:
\(\begin{array}{l}\frac{x}{3} = \frac{y}{4} \Rightarrow \frac{x}{3}.\frac{1}{5} = \frac{y}{4}.\frac{1}{5} \Rightarrow \frac{x}{{15}} = \frac{y}{{20}};\\\frac{y}{5} = \frac{z}{6} \Rightarrow \frac{y}{5}.\frac{1}{4} = \frac{z}{6}.\frac{1}{4} \Rightarrow \frac{y}{{20}} = \frac{z}{{24}}\end{array}\)
Vậy \(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}}\) (đpcm)
b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}} = \frac{{x - y + z}}{{15 - 20 + 24}} = \frac{{ - 76}}{{19}} = - 4\)
Vậy x = 15 . (-4) = -60; y = 20. (-4) = -80; z = 24 . (-4) = -96
a) \(\frac{x}{10}\)= \(\frac{y}{6}\)= \(\frac{z}{21}\) và 5x + y - 2z =28
\(\Rightarrow\)\(\frac{5x}{50}\)= \(\frac{y}{6}\)= \(\frac{2z}{42}\) và 5x + y - 2z=28
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}\)= \(\frac{y}{6}\)= \(\frac{2z}{42}\)= \(\frac{5x+y-2z}{50+6-42}\)= \(\frac{28}{14}\)=2
Suy ra: \(\frac{x}{10}\)= \(2\)\(\Rightarrow\)x=20
\(\frac{y}{6}\)= 2\(\Rightarrow\)y=12
\(\frac{z}{21}\)= 2\(\Rightarrow\)z=42
Vậy...
Hai câu b,c làm tương tự nhé
d) \(\frac{3}{x}\)= \(\frac{2}{y}\); \(\frac{7}{y}\)= \(\frac{5}{z}\) và x-y+z=32
\(\frac{y}{3}\)= \(\frac{x}{2}\); \(\frac{z}{7}\)= \(\frac{y}{5}\) và x-y+z=32
\(\frac{y}{15}\)= \(\frac{x}{10}\); \(\frac{z}{21}\)= \(\frac{y}{15}\) và x-y+z=32
\(\frac{y}{15}\)= \(\frac{x}{10}\)= \(\frac{z}{21}\) và x-y+z=32
........
biến đổi về dạng chuẩn rồi dùng t/c của dãy tỉ số bằng nhau
\(\frac{40}{x-30}=\frac{20}{y-15}=>2y-30=x-30=>x=2y.\)
Tương tự: \(\frac{40}{x-30}=\frac{28}{z-21}< =>\frac{10}{x-30}=\frac{7}{z-21}=>10z-210=7x-210=>7x=10z\)
\(\frac{20}{y-15}=\frac{28}{z-21}< =>\frac{5}{y-15}=\frac{7}{z-21}=>5z-105=7y-105=>7y=5z\)
Ta có: x.y.z=22400 <=> 2y.y.7y/5=22400
=> y3=22400.5/14=8000=203 => y=20 => z=7.20:5=28 ; x=2.20=40
Đáp số: x=40; y=20; z=28
=>\(\frac{x+y-z}{15+20-28}=\frac{7}{7}=1\)
=>\(\frac{x}{15}=1=>x=15\)
=>\(\frac{y}{20}=1=>y=20\)
=>\(\frac{z}{28}=1=>z=28\)
vậy:\(x=15;y=20;z=28\)
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{x+y-z}{15+20-28}=\frac{7}{7}=1\)
\(\frac{x}{15}=1\Rightarrow x=1.15\Rightarrow x=15\)
\(\frac{y}{20}=1\Rightarrow y=1.20\Rightarrow y=20\)
\(\frac{z}{28}=1\Rightarrow z=1.28\Rightarrow z=28\)
Vậy x = 15
y = 20
z = 28