Tìm gtnn:
B= 4x^2-4x+7
C=2x^2+4x+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=2\left(x^2-2x+1\right)+\left(y^2-14y+49\right)-35\\ =2\left(x-1\right)^2+\left(y-7\right)^2-35\ge-35\)
dấu = xảy ra khi x=1,y=7
tick mik nha
Ta có: \(B=2x^2-4x+y^2-14y+16\)
\(=2\left(x^2-2x+1\right)+y^2-14y+49-34\)
\(=2\left(x-1\right)^2+\left(y-7\right)^2-34\ge-34\forall x,y\)
Dấu '=' xảy ra khi x=1 và y=7
a) Ta có: \(6x\left(x-5\right)+3x\left(7-2x\right)=18\)
\(\Leftrightarrow6x^2-30x+21x-6x^2=18\)
\(\Leftrightarrow-9x=18\)
hay x=-2
Vậy: S={-2}
b) Ta có: \(2x\left(3x+1\right)+\left(4-2x\right)\cdot3x=7\)
\(\Leftrightarrow6x^2+2x+12x-6x^2=7\)
\(\Leftrightarrow14x=7\)
hay \(x=\dfrac{1}{2}\)
Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)
c) Ta có: \(0.5x\left(0.4-4x\right)+\left(2x+5\right)\cdot x=-6.5\)
\(\Leftrightarrow0.2x-2x^2+2x^2+5x=-6.5\)
\(\Leftrightarrow5.2x=-6.5\)
hay \(x=-\dfrac{5}{4}\)
Vậy: \(S=\left\{-\dfrac{5}{4}\right\}\)
d) Ta có: \(\left(x+3\right)\left(x+2\right)-\left(x-2\right)\left(x+5\right)=6\)
\(\Leftrightarrow x^2+5x+6-\left(x^2+3x-10\right)=6\)
\(\Leftrightarrow x^2+5x+6-x^2-3x+10=6\)
\(\Leftrightarrow2x+16=6\)
\(\Leftrightarrow2x=-10\)
hay x=-5
Vậy: S={-5}
e) Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)
\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)
\(\Leftrightarrow14x=0\)
hay x=0
Vậy: S={0}
d) \(4x^4-x^2=x^2\left(4x^2-1\right)=x^2\left(2x-1\right)\left(2x+1\right)\)
e) Ta có: \(6x^2-7x-5\)
\(=6x^2-10x+3x-5\)
\(=2x\left(3x-5\right)+\left(3x-5\right)\)
\(=\left(3x-5\right)\left(2x+1\right)\)
f: Ta có: \(-4x^2+23x-15\)
\(=-4x^2+20x+3x-15\)
\(=-4x\left(x-5\right)+3\left(x-5\right)\)
\(=\left(x-5\right)\left(-4x+3\right)\)
\(A=x^2+4x+5=\left(x+2\right)^2+1\ge1\)
Dấu \("="\Leftrightarrow x=-2\)
\(B=x^2+10x-1=\left(x+5\right)^2-26\ge-26\)
Dấu \("="\Leftrightarrow x=-5\)
\(C=5-4x+4x^2=\left(2x-1\right)^2+4\ge4\)
Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)
\(D=x^2+y^2-2x+6y-3=\left(x-1\right)^2+\left(y+3\right)^2-13\ge-13\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
\(E=2x^2+y^2+2xy+2x+3=\left(x+y\right)^2+\left(x+1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow x=-y=-1\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
\(A=x^2+4x+5\)
\(=x^2+4x+4+1\)
\(=\left(x+2\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi x=-2
\(C=4x^2-4x+5\)
\(=4x^2-4x+1+4\)
\(=\left(2x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
\(N=\dfrac{57x^2+38x+95}{19\left(4x^2+4x+1\right)}=\dfrac{14\left(4x^2+4x+1\right)+\left(x^2-18x+81\right)}{19\left(4x^2+4x+1\right)}=\dfrac{14}{19}+\left(\dfrac{x-9}{2x+1}\right)^2\ge\dfrac{14}{19}\)
\(N_{min}=\dfrac{14}{19}\) khi \(x=9\)
a: =-x^2+6x-4
=-(x^2-6x+4)
=-(x^2-6x+9-5)
=-(x-3)^2+5<=5
Dấu = xảy ra khi x=3
b: =3(x^2-5/3x+7/3)
=3(x^2-2*x*5/6+25/36+59/36)
=3(x-5/6)^2+59/12>=59/12
Dấu = xảy ra khi x=5/6
c: \(=-\left(x-3\right)^2+2\left|x-3\right|\)
\(=-\left[\left(\left|x-3\right|\right)^2-2\left|x-3\right|+1-1\right]\)
\(=-\left(\left|x-3\right|-1\right)^2+1< =1\)
Dấu = xảy ra khi x=4 hoặc x=2
\(B=4x^2-4x+7\)
\(B=\left[\left(2x\right)^2-2.2x.1+1^2\right]+6\)
\(B=\left(2x-1\right)^2+6\)
Ta có : \(\left(2x-1\right)^2\ge0\)
\(\Rightarrow\left(2x-1\right)^2+6\ge6\)
Vậy GTNN của B là \(6\)
Khi \(2x-1=0\)
\(2x=1\)
\(x=\frac{1}{2}\)
C=2x2+4x+5
C=2.(x2+2x+2,5)
C=2.(x2+2x+1)+3
C=2.(x+1)2+3
Vì 2.(x+1)2\(\ge\)0
Suy ra:2.(x+1)2+3 \(\ge\)3
Dấu = xảy ra khi x+1=0
x=-1
Vậy Min C=3 khi x=-1